文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

利用各种机器学习方法和传统模型预测地下矿山的巨型钻头钻进速度。

Prediction of jumbo drill penetration rate in underground mines using various machine learning approaches and traditional models.

机构信息

Department of Mining Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran.

出版信息

Sci Rep. 2024 Apr 18;14(1):8928. doi: 10.1038/s41598-024-59753-6.


DOI:10.1038/s41598-024-59753-6
PMID:38637673
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11026510/
Abstract

Estimating penetration rates of Jumbo drills is crucial for optimizing underground mining drilling processes, aiming to reduce costs and time. This study investigates various regression and machine learning methods, including Multilayer Perceptron (MLP), Support Vector Regression (SVR), and Random Forests (RF), to predict the penetration rates (ROP) using multivariate inputs such as operation parameters and rock mass characteristics. The Rock Mass Drillability Index (RDi), incorporating both intact rock properties and structural parameters, was utilized to characterize the rock mass. The dataset was split into 80% for training and 20% for testing. Performance metrics including correlation coefficient (R), variance accounted for (VAF), mean absolute error (MAE), mean absolute percentage error (MAPE), and root mean square error (RMSE) were calculated for each method to evaluate the accuracy of the predictions. SVR exhibited the best prediction performance for ROP, achieving the highest R2, lowest RMSE, MAE, and MAPE, as well as the largest VAF values of 0.94, 0.15, 0.11, 4.84, and 94.13 during training, and 0.91, 0.19, 0.13, 6.02, and 91.11 during testing, respectively. With this high accuracy, we conclude that the proposed machine learning algorithms are valuable and efficient predictors for estimating jumbo drill penetration rates in underground mining operations.

摘要

估算牙轮钻的穿透率对于优化地下采矿钻孔过程至关重要,目的是降低成本和时间。本研究调查了各种回归和机器学习方法,包括多层感知器(MLP)、支持向量回归(SVR)和随机森林(RF),使用操作参数和岩体特性等多元输入来预测穿透率(ROP)。岩石可钻性指数(RDi),综合了完整岩石特性和结构参数,用于描述岩体。数据集分为 80%用于训练和 20%用于测试。对于每种方法,都计算了相关系数(R)、方差解释(VAF)、平均绝对误差(MAE)、平均绝对百分比误差(MAPE)和均方根误差(RMSE)等性能指标,以评估预测的准确性。SVR 对 ROP 的预测表现最佳,在训练期间达到了最高的 R2、最低的 RMSE、MAE 和 MAPE 值,以及最大的 VAF 值 0.94、0.15、0.11、4.84 和 94.13,在测试期间达到了最高的 R2、最低的 RMSE、MAE 和 MAPE 值,以及最大的 VAF 值 0.91、0.19、0.13、6.02 和 91.11。鉴于这种高精度,我们得出结论,所提出的机器学习算法是估算地下采矿作业中牙轮钻穿透率的有价值且高效的预测器。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8618/11026510/1fbc2c7396d3/41598_2024_59753_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8618/11026510/ed4a4c7b361d/41598_2024_59753_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8618/11026510/2be68274a61f/41598_2024_59753_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8618/11026510/32043a896d66/41598_2024_59753_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8618/11026510/c641275bc64b/41598_2024_59753_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8618/11026510/31e8c790b2da/41598_2024_59753_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8618/11026510/874404951eb3/41598_2024_59753_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8618/11026510/dea5ac399726/41598_2024_59753_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8618/11026510/d63b5a6253fd/41598_2024_59753_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8618/11026510/04d7fa03b0f4/41598_2024_59753_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8618/11026510/1fbc2c7396d3/41598_2024_59753_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8618/11026510/ed4a4c7b361d/41598_2024_59753_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8618/11026510/2be68274a61f/41598_2024_59753_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8618/11026510/32043a896d66/41598_2024_59753_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8618/11026510/c641275bc64b/41598_2024_59753_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8618/11026510/31e8c790b2da/41598_2024_59753_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8618/11026510/874404951eb3/41598_2024_59753_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8618/11026510/dea5ac399726/41598_2024_59753_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8618/11026510/d63b5a6253fd/41598_2024_59753_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8618/11026510/04d7fa03b0f4/41598_2024_59753_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8618/11026510/1fbc2c7396d3/41598_2024_59753_Fig10_HTML.jpg

相似文献

[1]
Prediction of jumbo drill penetration rate in underground mines using various machine learning approaches and traditional models.

Sci Rep. 2024-4-18

[2]
Hybrid machine learning approach for accurate prediction of the drilling rock index.

Sci Rep. 2024-10-15

[3]
Hybridizing five neural-metaheuristic paradigms to predict the pillar stress in bord and pillar method.

Front Public Health. 2023

[4]
Predicting Readmission Charges Billed by Hospitals: Machine Learning Approach.

JMIR Med Inform. 2022-8-30

[5]
Predictive modeling of blood pressure during hemodialysis: a comparison of linear model, random forest, support vector regression, XGBoost, LASSO regression and ensemble method.

Comput Methods Programs Biomed. 2020-10

[6]
Optimizing neural networks for medical data sets: A case study on neonatal apnea prediction.

Artif Intell Med. 2019-7-25

[7]
A comparative study of 11 non-linear regression models highlighting autoencoder, DBN, and SVR, enhanced by SHAP importance analysis in soybean branching prediction.

Sci Rep. 2024-3-11

[8]
Machine learning-based prediction of effluent total suspended solids in a wastewater treatment plant using different feature selection approaches: A comparative study.

Environ Res. 2024-4-1

[9]
Modeling dissolved oxygen concentration using machine learning techniques with dimensionality reduction approach.

Environ Monit Assess. 2023-6-24

[10]
Consultation length and no-show prediction for improving appointment scheduling efficiency at a cardiology clinic: A data analytics approach.

Int J Med Inform. 2021-1

引用本文的文献

[1]
Improving the accuracy of dynamic inclination measurement by machine learning.

Sci Rep. 2024-10-23

本文引用的文献

[1]
Assessment of the ground vibration during blasting in mining projects using different computational approaches.

Sci Rep. 2023-10-30

[2]
Prediction of ground vibration due to mine blasting in a surface lead-zinc mine using machine learning ensemble techniques.

Sci Rep. 2023-4-21

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索