Department of Mining Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran.
Sci Rep. 2024 Apr 18;14(1):8928. doi: 10.1038/s41598-024-59753-6.
Estimating penetration rates of Jumbo drills is crucial for optimizing underground mining drilling processes, aiming to reduce costs and time. This study investigates various regression and machine learning methods, including Multilayer Perceptron (MLP), Support Vector Regression (SVR), and Random Forests (RF), to predict the penetration rates (ROP) using multivariate inputs such as operation parameters and rock mass characteristics. The Rock Mass Drillability Index (RDi), incorporating both intact rock properties and structural parameters, was utilized to characterize the rock mass. The dataset was split into 80% for training and 20% for testing. Performance metrics including correlation coefficient (R), variance accounted for (VAF), mean absolute error (MAE), mean absolute percentage error (MAPE), and root mean square error (RMSE) were calculated for each method to evaluate the accuracy of the predictions. SVR exhibited the best prediction performance for ROP, achieving the highest R2, lowest RMSE, MAE, and MAPE, as well as the largest VAF values of 0.94, 0.15, 0.11, 4.84, and 94.13 during training, and 0.91, 0.19, 0.13, 6.02, and 91.11 during testing, respectively. With this high accuracy, we conclude that the proposed machine learning algorithms are valuable and efficient predictors for estimating jumbo drill penetration rates in underground mining operations.
估算牙轮钻的穿透率对于优化地下采矿钻孔过程至关重要,目的是降低成本和时间。本研究调查了各种回归和机器学习方法,包括多层感知器(MLP)、支持向量回归(SVR)和随机森林(RF),使用操作参数和岩体特性等多元输入来预测穿透率(ROP)。岩石可钻性指数(RDi),综合了完整岩石特性和结构参数,用于描述岩体。数据集分为 80%用于训练和 20%用于测试。对于每种方法,都计算了相关系数(R)、方差解释(VAF)、平均绝对误差(MAE)、平均绝对百分比误差(MAPE)和均方根误差(RMSE)等性能指标,以评估预测的准确性。SVR 对 ROP 的预测表现最佳,在训练期间达到了最高的 R2、最低的 RMSE、MAE 和 MAPE 值,以及最大的 VAF 值 0.94、0.15、0.11、4.84 和 94.13,在测试期间达到了最高的 R2、最低的 RMSE、MAE 和 MAPE 值,以及最大的 VAF 值 0.91、0.19、0.13、6.02 和 91.11。鉴于这种高精度,我们得出结论,所提出的机器学习算法是估算地下采矿作业中牙轮钻穿透率的有价值且高效的预测器。
JMIR Med Inform. 2022-8-30
Artif Intell Med. 2019-7-25
Environ Monit Assess. 2023-6-24