Department of Chemical Engineering, Texas A&M University, 3122 TAMU, College Station, TX 77843, United States.
Interdisciplinary Program in Genetics and Genomics, Texas A&M University, College Station, TX 77843, United States.
Bioinformatics. 2023 Jul 1;39(7). doi: 10.1093/bioinformatics/btad403.
Mathematical models in systems biology help generate hypotheses, guide experimental design, and infer the dynamics of gene regulatory networks. These models are characterized by phenomenological or mechanistic parameters, which are typically hard to measure. Therefore, efficient parameter estimation is central to model development. Global optimization techniques, such as evolutionary algorithms (EAs), are applied to estimate model parameters by inverse modeling, i.e. calibrating models by minimizing a function that evaluates a measure of the error between model predictions and experimental data. EAs estimate model parameters "fittest individuals" by generating a large population of individuals using strategies like recombination and mutation over multiple "generations." Typically, only a few individuals from each generation are used to create new individuals in the next generation. Improved Evolutionary Strategy by Stochastic Ranking (ISRES), proposed by Runnarson and Yao, is one such EA that is widely used in systems biology to estimate parameters. ISRES uses information at most from a pair of individuals in any generation to create a new population to minimize the error. In this article, we propose an efficient evolutionary strategy, ISRES+, which builds on ISRES by combining information from all individuals across the population and across all generations to develop a better understanding of the fitness landscape.
ISRES+ uses the additional information generated by the algorithm during evolution to approximate the local neighborhood around the best-fit individual using linear least squares fits in one and two dimensions, enabling efficient parameter estimation. ISRES+ outperforms ISRES and results in fitter individuals with a tighter distribution over multiple runs, such that a typical run of ISRES+ estimates parameters with a higher goodness-of-fit compared with ISRES.
Algorithm and implementation: Github-https://github.com/gtreeves/isres-plus-bandodkar-2022.
系统生物学中的数学模型有助于生成假设、指导实验设计,并推断基因调控网络的动态。这些模型的特点是具有现象学或机械学参数,而这些参数通常很难测量。因此,高效的参数估计是模型开发的核心。全局优化技术,如进化算法 (EA),通过逆建模来估计模型参数,即通过最小化评估模型预测与实验数据之间误差的函数来校准模型。EA 通过使用重组和突变等策略在多个“代”中生成大量个体来估计模型参数的“最适应个体”。通常,只有每一代的少数个体用于在下一代中创建新个体。Runnarson 和 Yao 提出的改进的随机排序进化策略 (ISRES) 是一种在系统生物学中广泛用于估计参数的 EA。ISRES 使用最多从每一代的一对个体中获取信息来创建一个新的种群,以最小化误差。在本文中,我们提出了一种有效的进化策略 ISRES+,它通过结合种群和所有世代中所有个体的信息来构建,以更好地了解适应度景观。
ISRES+ 使用算法在进化过程中生成的附加信息,使用一维和二维的线性最小二乘法拟合来近似最佳拟合个体周围的局部邻域,从而实现高效的参数估计。ISRES+ 优于 ISRES,并且在多次运行中产生了更适应的个体,其分布更紧密,因此,ISRES+ 的典型运行比 ISRES 更能估计参数的拟合优度。
算法和实现:Github-https://github.com/gtreeves/isres-plus-bandodkar-2022.