Suppr超能文献

基于多参数和多区域磁共振图像的列线图预测 IDH1 基因突变。

Prediction of IDH1 gene mutation by a nomogram based on multiparametric and multiregional MR images.

机构信息

Department of Radiology, Ningbo Medical Center Lihuili Hospital, Ningbo University, China.

Department of Radiology, Ningbo Medical Center Lihuili Hospital, Ningbo University, China.

出版信息

Clinics (Sao Paulo). 2023 Jun 22;78:100238. doi: 10.1016/j.clinsp.2023.100238. eCollection 2023.

Abstract

OBJECTIVE

To investigate the value of a nomogram based on multiparametric and multiregional MR images to predict Isocitrate Dehydrogenase-1 (IDH1) gene mutations in glioma.

DATA AND METHODS

The authors performed a retrospective analysis of 110 MR images of surgically confirmed pathological gliomas; 33 patients with IDH1 gene Mutation (IDH1-M) and 77 patients with Wild-type IDH1 (IDH1-W) were divided into training and validation sets in a 7:3 ratio. The clinical features were statistically analyzed using SPSS and R software. Three glioma regions (rCET, rE, rNEC) were outlined using ITK-SNAP software and projected to four conventional sequences (T1, T2, Flair, T1C) for feature extraction using AI-Kit software. The extracted features were screened using R software. A logistic regression model was established, and a nomogram was generated using the selected clinical features. Eight models were developed based on different sequences and ROIs, and Receiver Operating Characteristic (ROC) curves were used to evaluate the predictive efficacy. Decision curve analysis was performed to assess the clinical usefulness.

RESULTS

Age was selected with Radscore to construct the nomogram. The Model 1 AUC values based on four sequences and three ROIs were the highest in these models, at 0.93 and 0.89, respectively. Decision curve analysis indicated that the net benefit of model 1 was higher than that of the other models for most Pt-values.

CONCLUSION

A nomogram based on multiparametric and multiregional MR images can predict the mutation status of the IDH1 gene accurately.

摘要

目的

研究基于多参数和多区域磁共振图像的列线图预测胶质瘤异柠檬酸脱氢酶-1(IDH1)基因突变的价值。

数据与方法

作者对 110 例经手术证实的病理胶质瘤的磁共振图像进行了回顾性分析;将 33 例 IDH1 基因突变(IDH1-M)患者和 77 例野生型 IDH1(IDH1-W)患者按 7:3 的比例分为训练集和验证集。使用 SPSS 和 R 软件对临床特征进行统计学分析。使用 ITK-SNAP 软件勾画三个胶质瘤区域(rCET、rE、rNEC),并将其投影到四个常规序列(T1、T2、Flair、T1C),使用 AI-Kit 软件提取特征。使用 R 软件筛选提取的特征。建立逻辑回归模型,使用选择的临床特征生成列线图。基于不同的序列和 ROI 建立了 8 个模型,并使用受试者工作特征(ROC)曲线评估预测效能。使用决策曲线分析评估临床实用性。

结果

年龄与 Radscore 一起被选为构建列线图的特征。在这些模型中,基于四个序列和三个 ROI 的模型 1 的 AUC 值最高,分别为 0.93 和 0.89。决策曲线分析表明,对于大多数 Pt 值,模型 1 的净收益高于其他模型。

结论

基于多参数和多区域磁共振图像的列线图可以准确预测 IDH1 基因突变状态。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/57e6/10329099/6aa3e4e92b3f/gr1.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验