Suppr超能文献

基于磁共振成像的放射组学和机器学习对低级别胶质瘤的分子亚型分类。

Molecular subtype classification of low-grade gliomas using magnetic resonance imaging-based radiomics and machine learning.

机构信息

International Master/Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.

Children's Hospital 2, Ho Chi Minh City, Vietnam.

出版信息

NMR Biomed. 2022 Nov;35(11):e4792. doi: 10.1002/nbm.4792. Epub 2022 Jul 13.

Abstract

In 2016, the World Health Organization (WHO) updated the glioma classification by incorporating molecular biology parameters, including low-grade glioma (LGG). In the new scheme, LGGs have three molecular subtypes: isocitrate dehydrogenase (IDH)-mutated 1p/19q-codeleted, IDH-mutated 1p/19q-noncodeleted, and IDH-wild type 1p/19q-noncodeleted entities. This work proposes a model prediction of LGG molecular subtypes using magnetic resonance imaging (MRI). MR images were segmented and converted into radiomics features, thereby providing predictive information about the brain tumor classification. With 726 raw features obtained from the feature extraction procedure, we developed a hybrid machine learning-based radiomics by incorporating a genetic algorithm and eXtreme Gradient Boosting (XGBoost) classifier, to ascertain 12 optimal features for tumor classification. To resolve imbalanced data, the synthetic minority oversampling technique (SMOTE) was applied in our study. The XGBoost algorithm outperformed the other algorithms on the training dataset by an accuracy value of 0.885. We continued evaluating the XGBoost model, then achieved an overall accuracy of 0.6905 for the three-subtype classification of LGGs on an external validation dataset. Our model is among just a few to have resolved the three-subtype LGG classification challenge with high accuracy compared with previous studies performing similar work.

摘要

2016 年,世界卫生组织(WHO)通过纳入分子生物学参数更新了胶质瘤分类,包括低级别胶质瘤(LGG)。在新方案中,LGG 有三个分子亚型:异柠檬酸脱氢酶(IDH)突变 1p/19q 共缺失型、IDH 突变 1p/19q 非共缺失型和 IDH 野生型 1p/19q 非共缺失型实体。本研究提出了一种使用磁共振成像(MRI)预测 LGG 分子亚型的模型。对 MRI 图像进行分割并转换为放射组学特征,从而为脑肿瘤分类提供预测信息。通过特征提取过程获得 726 个原始特征,我们开发了一种结合遗传算法和极端梯度提升(XGBoost)分类器的混合机器学习放射组学模型,以确定 12 个用于肿瘤分类的最佳特征。为了解决数据不平衡问题,我们在研究中应用了合成少数过采样技术(SMOTE)。在训练数据集上,XGBoost 算法的准确率为 0.885,优于其他算法。我们继续评估 XGBoost 模型,然后在外部验证数据集上实现了 LGG 三亚型分类的总体准确率为 0.6905。与之前进行类似工作的研究相比,我们的模型是少数几个能够以高精度解决三亚型 LGG 分类挑战的模型之一。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验