Heffner Tanja, Brami Semi A, Mendes Lucas W, Kaupper Thomas, Hannula Emilia S, Poehlein Anja, Horn Marcus A, Ho Adrian
Leibniz Universität Hannover, Institute for Microbiology, Herrenhäuser Str. 2, 30419, Hannover, Germany.
University of São Paulo CENA-USP, Center for Nuclear Energy in Agriculture, Avenida Centenario, 303, 13416-000, Piracicaba (SP), Brazil.
ISME Commun. 2023 Jun 24;3(1):62. doi: 10.1038/s43705-023-00271-3.
Porcellio scaber (woodlice) are (sub-)surface-dwelling isopods, widely recognized as "soil bioengineers", modifying the edaphic properties of their habitat, and affecting carbon and nitrogen mineralization that leads to greenhouse gas emissions. Yet, the impact of soil isopods on methane-cycling processes remains unknown. Using P. scaber as a model macroinvertebrate in a microcosm study, we determined how the isopod influences methane uptake and the associated interaction network in an agricultural soil. Stable isotope probing (SIP) with C-methane was combined to a co-occurrence network analysis to directly link activity to the methane-oxidizing community (bacteria and fungus) involved in the trophic interaction. Compared to microcosms without the isopod, P. scaber significantly induced methane uptake, associated to a more complex bacteria-bacteria and bacteria-fungi interaction, and modified the soil nutritional status. Interestingly, C was transferred via the methanotrophs into the fungi, concomitant to significantly higher fungal abundance in the P. scaber-impacted soil, indicating that the fungal community utilized methane-derived substrates in the food web along with bacteria. Taken together, results showed the relevance of P. scaber in modulating methanotrophic activity with implications for bacteria-fungus interaction.
鼠妇(土鳖虫)是生活在(亚)地表的等足类动物,被广泛认为是“土壤生物工程师”,它们改变栖息地的土壤性质,并影响导致温室气体排放的碳和氮矿化过程。然而,土壤等足类动物对甲烷循环过程的影响仍然未知。在一项微观研究中,我们以鼠妇作为模型大型无脊椎动物,确定了这种等足类动物如何影响农业土壤中的甲烷吸收以及相关的相互作用网络。将用¹³C-甲烷进行的稳定同位素探测(SIP)与共现网络分析相结合,以直接将活性与参与营养相互作用的甲烷氧化群落(细菌和真菌)联系起来。与没有鼠妇的微观世界相比,鼠妇显著诱导了甲烷吸收,这与更复杂的细菌-细菌和细菌-真菌相互作用相关,并改变了土壤营养状况。有趣的是,碳通过甲烷营养菌转移到真菌中,与此同时,在受鼠妇影响的土壤中真菌丰度显著更高,这表明真菌群落与细菌一起在食物网中利用甲烷衍生的底物。综上所述,结果表明鼠妇在调节甲烷营养活性方面具有重要意义,对细菌-真菌相互作用有影响。