Suppr超能文献

基于变分改进的依赖历史偏差的全原子模拟的 RNA 折叠途径。

RNA folding pathways from all-atom simulations with a variationally improved history-dependent bias.

机构信息

Frankfurt Institute for Advanced Studies, Frankfurt am Main, Germany; Physics Department of Trento University, Povo (Trento), Italy.

SISSA - International School for Advanced Studies, Trieste, Italy.

出版信息

Biophys J. 2023 Aug 8;122(15):3089-3098. doi: 10.1016/j.bpj.2023.06.012. Epub 2023 Jun 24.

Abstract

Atomically detailed simulations of RNA folding have proven very challenging in view of the difficulties of developing realistic force fields and the intrinsic computational complexity of sampling rare conformational transitions. As a step forward in tackling these issues, we extend to RNA an enhanced path-sampling method previously successfully applied to proteins. In this scheme, the information about the RNA's native structure is harnessed by a soft history-dependent biasing force promoting the generation of productive folding trajectories in an all-atom force field with explicit solvent. A rigorous variational principle is then applied to minimize the effect of the bias. Here, we report on an application of this method to RNA molecules from 20 to 47 nucleotides long and increasing topological complexity. By comparison with analog simulations performed on small proteins with similar size and architecture, we show that the RNA folding landscape is significantly more frustrated, even for relatively small chains with a simple topology. The predicted RNA folding mechanisms are found to be consistent with the available experiments and some of the existing coarse-grained models. Due to its computational performance, this scheme provides a promising platform to efficiently gather atomistic RNA folding trajectories, thus retain the information about the chemical composition of the sequence.

摘要

鉴于开发真实力场的困难和采样稀有构象转变的内在计算复杂性,原子级详细的 RNA 折叠模拟一直极具挑战性。作为解决这些问题的一个步骤,我们将一种以前成功应用于蛋白质的增强路径采样方法扩展到 RNA 中。在该方案中,通过软历史相关的偏置力利用 RNA 天然结构的信息,该偏置力促进在具有显式溶剂的全原子力场中生成有生产性的折叠轨迹。然后应用严格的变分原理来最小化偏差的影响。在这里,我们报告了该方法在 20 到 47 个核苷酸长度且拓扑复杂度不断增加的 RNA 分子上的应用。通过与具有相似大小和结构的小型蛋白质进行的类似模拟进行比较,我们表明 RNA 折叠景观的阻碍性要大得多,即使对于拓扑结构简单的相对较小的链也是如此。预测的 RNA 折叠机制与可用的实验和一些现有的粗粒模型一致。由于其计算性能,该方案为高效收集原子 RNA 折叠轨迹提供了一个有前途的平台,从而保留了序列化学组成的信息。

相似文献

1
RNA folding pathways from all-atom simulations with a variationally improved history-dependent bias.
Biophys J. 2023 Aug 8;122(15):3089-3098. doi: 10.1016/j.bpj.2023.06.012. Epub 2023 Jun 24.
2
Investigation of protein folding by coarse-grained molecular dynamics with the UNRES force field.
J Phys Chem A. 2010 Apr 8;114(13):4471-85. doi: 10.1021/jp9117776.
3
Variational scheme to compute protein reaction pathways using atomistic force fields with explicit solvent.
Phys Rev Lett. 2015 Mar 6;114(9):098103. doi: 10.1103/PhysRevLett.114.098103. Epub 2015 Mar 4.
4
A critical comparison of coarse-grained structure-based approaches and atomic models of protein folding.
Phys Chem Chem Phys. 2017 May 31;19(21):13629-13639. doi: 10.1039/c7cp01532a.
5
Computing Reaction Pathways of Rare Biomolecular Transitions using Atomistic Force-Fields.
Biophys Chem. 2016 Jan;208:62-7. doi: 10.1016/j.bpc.2015.06.014. Epub 2015 Aug 14.
6
Multiscale investigation of chemical interference in proteins.
J Chem Phys. 2010 May 7;132(17):175101. doi: 10.1063/1.3404401.
7
Folding Mechanism of Proteins Im7 and Im9: Insight from All-Atom Simulations in Implicit and Explicit Solvent.
J Phys Chem B. 2016 Sep 8;120(35):9297-307. doi: 10.1021/acs.jpcb.6b05819. Epub 2016 Aug 29.
9
Atomistic molecular simulations of protein folding.
Curr Opin Struct Biol. 2012 Feb;22(1):52-61. doi: 10.1016/j.sbi.2011.12.001. Epub 2012 Jan 17.
10
Force field influences in beta-hairpin folding simulations.
Protein Sci. 2006 Nov;15(11):2642-55. doi: 10.1110/ps.062438006.

引用本文的文献

本文引用的文献

1
Alternative RNA Conformations: Companion or Combatant.
Genes (Basel). 2022 Oct 23;13(11):1930. doi: 10.3390/genes13111930.
3
Investigating the structural changes due to adenosine methylation of the Kaposi's sarcoma-associated herpes virus ORF50 transcript.
PLoS Comput Biol. 2022 May 26;18(5):e1010150. doi: 10.1371/journal.pcbi.1010150. eCollection 2022 May.
4
Thoughts on how to think (and talk) about RNA structure.
Proc Natl Acad Sci U S A. 2022 Apr 26;119(17):e2112677119. doi: 10.1073/pnas.2112677119. Epub 2022 Apr 19.
5
Toward Convergence in Folding Simulations of RNA Tetraloops: Comparison of Enhanced Sampling Techniques and Effects of Force Field Modifications.
J Chem Theory Comput. 2022 Apr 12;18(4):2642-2656. doi: 10.1021/acs.jctc.1c01222. Epub 2022 Apr 1.
6
Slow Escape from a Helical Misfolded State of the Pore-Forming Toxin Cytolysin A.
JACS Au. 2021 Jul 13;1(8):1217-1230. doi: 10.1021/jacsau.1c00175. eCollection 2021 Aug 23.
7
To Knot or Not to Knot: Multiple Conformations of the SARS-CoV-2 Frameshifting RNA Element.
J Am Chem Soc. 2021 Aug 4;143(30):11404-11422. doi: 10.1021/jacs.1c03003. Epub 2021 Jul 20.
8
RNA 3D Structure Prediction Using Coarse-Grained Models.
Front Mol Biosci. 2021 Jul 2;8:720937. doi: 10.3389/fmolb.2021.720937. eCollection 2021.
9
Conformational Ensembles of Noncoding Elements in the SARS-CoV-2 Genome from Molecular Dynamics Simulations.
J Am Chem Soc. 2021 Jun 9;143(22):8333-8343. doi: 10.1021/jacs.1c01094. Epub 2021 May 26.
10
Alternative RNA structures formed during transcription depend on elongation rate and modify RNA processing.
Mol Cell. 2021 Apr 15;81(8):1789-1801.e5. doi: 10.1016/j.molcel.2021.01.040. Epub 2021 Feb 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验