Department of Chemistry, New York University, 100 Washington Square East, Silver Building, New York, New York 10003, United States.
Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, New York 10012, United States.
J Am Chem Soc. 2021 Aug 4;143(30):11404-11422. doi: 10.1021/jacs.1c03003. Epub 2021 Jul 20.
The SARS-CoV-2 frameshifting RNA element (FSE) is an excellent target for therapeutic intervention against Covid-19. This small gene element employs a shifting mechanism to pause and backtrack the ribosome during translation between Open Reading Frames 1a and 1b, which code for viral polyproteins. Any interference with this process has a profound effect on viral replication and propagation. Pinpointing the structures adapted by the FSE and associated structural transformations involved in frameshifting has been a challenge. Using our graph-theory-based modeling tools for representing RNA secondary structures, "RAG" (RNA-As-Graphs), and chemical structure probing experiments, we show that the 3-stem H-type pseudoknot (3_6 dual graph), long assumed to be the dominant structure, has a viable alternative, an HL-type 3-stem pseudoknot (3_3) for longer constructs. In addition, an unknotted 3-way junction RNA (3_5) emerges as a minor conformation. These three conformations share Stems 1 and 3, while the different Stem 2 may be involved in a conformational switch and possibly associations with the ribosome during translation. For full-length genomes, a stem-loop motif (2_2) may compete with these forms. These structural and mechanistic insights advance our understanding of the SARS-CoV-2 frameshifting process and concomitant virus life cycle, and point to three avenues of therapeutic intervention.
SARS-CoV-2 框架移位 RNA 元件(FSE)是针对 COVID-19 的治疗干预的极佳靶点。这个小基因元件采用移位机制,在 1a 和 1b 开放阅读框之间的翻译过程中使核糖体暂停和回溯,这两个框编码病毒多蛋白。任何对这一过程的干扰都会对病毒的复制和传播产生深远的影响。确定 FSE 适应的结构以及与框架移位相关的结构转化一直是一个挑战。使用我们基于图论的 RNA 二级结构表示工具“RAG”(RNA 作为图)和化学结构探测实验,我们表明,长期以来被认为是主要结构的 3 茎 H 型假结(3_6 双图)具有可行的替代结构,即较长结构的 HL 型 3 茎假结(3_3)。此外,出现了一种无纽结的 3 向连接 RNA(3_5)作为次要构象。这三种构象共享茎 1 和 3,而不同的茎 2 可能参与构象转换,并可能在翻译过程中与核糖体相关联。对于全长基因组,茎环基序(2_2)可能与这些形式竞争。这些结构和机制上的见解增进了我们对 SARS-CoV-2 框架移位过程和伴随的病毒生命周期的理解,并指出了三种治疗干预途径。