Suppr超能文献

是否打结:SARS-CoV-2 框架移位 RNA 元件的多种构象。

To Knot or Not to Knot: Multiple Conformations of the SARS-CoV-2 Frameshifting RNA Element.

机构信息

Department of Chemistry, New York University, 100 Washington Square East, Silver Building, New York, New York 10003, United States.

Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, New York 10012, United States.

出版信息

J Am Chem Soc. 2021 Aug 4;143(30):11404-11422. doi: 10.1021/jacs.1c03003. Epub 2021 Jul 20.

Abstract

The SARS-CoV-2 frameshifting RNA element (FSE) is an excellent target for therapeutic intervention against Covid-19. This small gene element employs a shifting mechanism to pause and backtrack the ribosome during translation between Open Reading Frames 1a and 1b, which code for viral polyproteins. Any interference with this process has a profound effect on viral replication and propagation. Pinpointing the structures adapted by the FSE and associated structural transformations involved in frameshifting has been a challenge. Using our graph-theory-based modeling tools for representing RNA secondary structures, "RAG" (RNA-As-Graphs), and chemical structure probing experiments, we show that the 3-stem H-type pseudoknot (3_6 dual graph), long assumed to be the dominant structure, has a viable alternative, an HL-type 3-stem pseudoknot (3_3) for longer constructs. In addition, an unknotted 3-way junction RNA (3_5) emerges as a minor conformation. These three conformations share Stems 1 and 3, while the different Stem 2 may be involved in a conformational switch and possibly associations with the ribosome during translation. For full-length genomes, a stem-loop motif (2_2) may compete with these forms. These structural and mechanistic insights advance our understanding of the SARS-CoV-2 frameshifting process and concomitant virus life cycle, and point to three avenues of therapeutic intervention.

摘要

SARS-CoV-2 框架移位 RNA 元件(FSE)是针对 COVID-19 的治疗干预的极佳靶点。这个小基因元件采用移位机制,在 1a 和 1b 开放阅读框之间的翻译过程中使核糖体暂停和回溯,这两个框编码病毒多蛋白。任何对这一过程的干扰都会对病毒的复制和传播产生深远的影响。确定 FSE 适应的结构以及与框架移位相关的结构转化一直是一个挑战。使用我们基于图论的 RNA 二级结构表示工具“RAG”(RNA 作为图)和化学结构探测实验,我们表明,长期以来被认为是主要结构的 3 茎 H 型假结(3_6 双图)具有可行的替代结构,即较长结构的 HL 型 3 茎假结(3_3)。此外,出现了一种无纽结的 3 向连接 RNA(3_5)作为次要构象。这三种构象共享茎 1 和 3,而不同的茎 2 可能参与构象转换,并可能在翻译过程中与核糖体相关联。对于全长基因组,茎环基序(2_2)可能与这些形式竞争。这些结构和机制上的见解增进了我们对 SARS-CoV-2 框架移位过程和伴随的病毒生命周期的理解,并指出了三种治疗干预途径。

相似文献

1
To Knot or Not to Knot: Multiple Conformations of the SARS-CoV-2 Frameshifting RNA Element.
J Am Chem Soc. 2021 Aug 4;143(30):11404-11422. doi: 10.1021/jacs.1c03003. Epub 2021 Jul 20.
2
To knot or not to knot: Multiple conformations of the SARS-CoV-2 frameshifting RNA element.
bioRxiv. 2021 Jul 5:2021.03.31.437955. doi: 10.1101/2021.03.31.437955.
4
Structure-altering mutations of the SARS-CoV-2 frameshifting RNA element.
Biophys J. 2021 Mar 16;120(6):1040-1053. doi: 10.1016/j.bpj.2020.10.012. Epub 2020 Oct 21.
5
An intricate balancing act: Upstream and downstream frameshift co-regulatory elements.
bioRxiv. 2024 Jun 27:2024.06.27.599960. doi: 10.1101/2024.06.27.599960.
6
Evolution of coronavirus frameshifting elements: Competing stem networks explain conservation and variability.
Proc Natl Acad Sci U S A. 2023 May 16;120(20):e2221324120. doi: 10.1073/pnas.2221324120. Epub 2023 May 8.
7
10
Cis-mediated interactions of the SARS-CoV-2 frameshift RNA alter its conformations and affect function.
Nucleic Acids Res. 2023 Jan 25;51(2):728-743. doi: 10.1093/nar/gkac1184.

引用本文的文献

1
Multi-scale Jones polynomial and persistent Jones polynomial for knot data analysis.
AIMS Math. 2025;10(1):1463-1487. doi: 10.3934/math.2025068. Epub 2025 Jan 22.
3
How large is the universe of RNA-like motifs? A clustering analysis of RNA graph motifs using topological descriptors.
PLoS Comput Biol. 2025 Jul 15;21(7):e1013230. doi: 10.1371/journal.pcbi.1013230. eCollection 2025 Jul.
4
Conformational Analysis and Structure-Altering Mutations of the HIV-1 Frameshifting Element.
Int J Mol Sci. 2025 Jun 30;26(13):6297. doi: 10.3390/ijms26136297.
5
Phase Space Invaders' podcast episode with Tamar Schlick: a trajectory from mathematics to biology.
Biophys Rev. 2025 Jan 28;17(1):15-23. doi: 10.1007/s12551-025-01271-4. eCollection 2025 Feb.
6
A Cascade of Conformational Switches in SARS-CoV-2 Frameshifting: Coregulation by Upstream and Downstream Elements.
Biochemistry. 2025 Feb 18;64(4):953-966. doi: 10.1021/acs.biochem.4c00641. Epub 2025 Feb 5.
8
Heterogeneous and multiple conformational transition pathways between pseudoknots of the SARS-CoV-2 frameshift element.
Proc Natl Acad Sci U S A. 2025 Jan 28;122(4):e2417479122. doi: 10.1073/pnas.2417479122. Epub 2025 Jan 24.
9
High-throughput sequencing: a breakthrough in molecular diagnosis for precision medicine.
Funct Integr Genomics. 2025 Jan 22;25(1):22. doi: 10.1007/s10142-025-01529-w.
10
CParty: hierarchically constrained partition function of RNA pseudoknots.
Bioinformatics. 2024 Dec 26;41(1). doi: 10.1093/bioinformatics/btae748.

本文引用的文献

2
Cryo-EM and antisense targeting of the 28-kDa frameshift stimulation element from the SARS-CoV-2 RNA genome.
Nat Struct Mol Biol. 2021 Sep;28(9):747-754. doi: 10.1038/s41594-021-00653-y. Epub 2021 Aug 23.
3
A map of the SARS-CoV-2 RNA structurome.
NAR Genom Bioinform. 2021 May 22;3(2):lqab043. doi: 10.1093/nargab/lqab043. eCollection 2021 Jun.
4
Structural basis of ribosomal frameshifting during translation of the SARS-CoV-2 RNA genome.
Science. 2021 Jun 18;372(6548):1306-1313. doi: 10.1126/science.abf3546. Epub 2021 May 13.
5
De novo 3D models of SARS-CoV-2 RNA elements from consensus experimental secondary structures.
Nucleic Acids Res. 2021 Apr 6;49(6):3092-3108. doi: 10.1093/nar/gkab119.
6
In vivo structural characterization of the SARS-CoV-2 RNA genome identifies host proteins vulnerable to repurposed drugs.
Cell. 2021 Apr 1;184(7):1865-1883.e20. doi: 10.1016/j.cell.2021.02.008. Epub 2021 Feb 9.
7
Genome-scale deconvolution of RNA structure ensembles.
Nat Methods. 2021 Mar;18(3):249-252. doi: 10.1038/s41592-021-01075-w. Epub 2021 Feb 22.
8
Graph, pseudoknot, and SARS-CoV-2 genomic RNA: A biophysical synthesis.
Biophys J. 2021 Mar 16;120(6):980-982. doi: 10.1016/j.bpj.2021.01.030. Epub 2021 Feb 3.
9
Modeling the structure of the frameshift-stimulatory pseudoknot in SARS-CoV-2 reveals multiple possible conformers.
PLoS Comput Biol. 2021 Jan 19;17(1):e1008603. doi: 10.1371/journal.pcbi.1008603. eCollection 2021 Jan.
10
Comprehensive in vivo secondary structure of the SARS-CoV-2 genome reveals novel regulatory motifs and mechanisms.
Mol Cell. 2021 Feb 4;81(3):584-598.e5. doi: 10.1016/j.molcel.2020.12.041. Epub 2021 Jan 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验