Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, New York, USA.
Division of Biological and Biomedical Systems, School of Science and Engineering, University of Missouri-Kansas City, Kansas City, Missouri, USA.
J Biol Chem. 2023 Aug;299(8):104952. doi: 10.1016/j.jbc.2023.104952. Epub 2023 Jun 23.
Neural plasticity, the ability to alter the structure and function of neural circuits, varies throughout the age of an individual. The end of the hyperplastic period in the central nervous system coincides with the appearance of honeycomb-like structures called perineuronal nets (PNNs) that surround a subset of neurons. PNNs are a condensed form of neural extracellular matrix that include the glycosaminoglycan hyaluronan and extracellular matrix proteins such as aggrecan and tenascin-R (TNR). PNNs are key regulators of developmental neural plasticity and cognitive functions, yet our current understanding of the molecular interactions that help assemble them remains limited. Disruption of Ptprz1, the gene encoding the receptor protein tyrosine phosphatase RPTPζ, altered the appearance of nets from a reticulated structure to puncta on the surface of cortical neuron bodies in adult mice. The structural alterations mirror those found in Tnr mice, and TNR is absent from the net structures that form in dissociated cultures of Ptprz1 cortical neurons. These findings raised the possibility that TNR and RPTPζ cooperate to promote the assembly of PNNs. Here, we show that TNR associates with the RPTPζ ectodomain and provide a structural basis for these interactions. Furthermore, we show that RPTPζ forms an identical complex with tenascin-C, a homolog of TNR that also regulates neural plasticity. Finally, we demonstrate that mutating residues at the RPTPζ-TNR interface impairs the formation of PNNs in dissociated neuronal cultures. Overall, this work sets the stage for analyzing the roles of protein-protein interactions that underpin the formation of nets.
神经可塑性是指改变神经网络结构和功能的能力,它在个体的一生中都在发生变化。中枢神经系统的过度增生期结束时,会出现一种被称为神经周围网(PNNs)的蜂窝状结构,这些结构包围着一部分神经元。PNNs 是一种神经细胞外基质的浓缩形式,包括糖胺聚糖透明质酸和细胞外基质蛋白,如聚集蛋白聚糖和 tenascin-R(TNR)。PNNs 是发育神经可塑性和认知功能的关键调节因子,但我们对帮助组装它们的分子相互作用的理解仍然有限。编码受体蛋白酪氨酸磷酸酶 RPTPζ 的基因 Ptprz1 的破坏改变了成年小鼠大脑皮层神经元表面的网状结构为点状结构。这种结构改变与 Tnr 小鼠中的改变相似,并且在 Ptprz1 大脑皮层神经元分离培养中形成的网络中不存在 TNR。这些发现提出了 TNR 和 RPTPζ 可能合作促进 PNN 组装的可能性。在这里,我们表明 TNR 与 RPTPζ 胞外结构域结合,并为这些相互作用提供了结构基础。此外,我们表明 RPTPζ 与 tenascin-C 形成相同的复合物,tenascin-C 是 TNR 的同源物,也调节神经可塑性。最后,我们证明在分离的神经元培养物中,突变 RPTPζ-TNR 界面上的残基会损害 PNN 的形成。总的来说,这项工作为分析构成网络的蛋白质-蛋白质相互作用的作用奠定了基础。