State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China.
State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang 150090, China.
Sci Total Environ. 2023 Oct 15;895:165104. doi: 10.1016/j.scitotenv.2023.165104. Epub 2023 Jun 24.
Electroactive bacteria can display notable plasticity in their response to magnetic field (MF), which prompted bioelectrochemical system as promising candidates for magnetic sensor applications. In this study, we explored the sensing and stimulatory effect of MF on current generation by Geobacter sulfurreducens, and elucidated the related molecular mechanism at the transcriptomic level. MF treatment significantly enhanced electricity generation and overall energy efficiency of G. sulfurreducens by 50 % and 22 %, respectively. The response of current to MFs was instantaneous and reversible. Cyclic voltammetry analysis of the anode biofilm revealed that the redox couples changed from -0.31 to -0.39 V (vs. Ag/AgCl), suggesting that MFs could alter electron transfer related components. Differential gene expression analysis further verified this hypothesis, genes associated with electron transfer were upregulated in G. sulfurreducens under MF treatment relative to the control group, specifically, genes encoding periplasmic c-type cytochromes (ppcA and ppcD), outer membrane cytochrome (omcF, omcZ, omcB), pili (pilA-C, pilM, and pilV2), and ribosome. The enhanced bacterial extracellular electron transfer process was also linked to the overexpression of the NADH dehydrogenase I subunit, the ABC transporter, transcriptional regulation, and ATP synthase. Overall, our findings shed light on the molecular mechanism underlying the effects of magnetic field stimuli on EAB and provide a theoretical basis for its further application in magnetic sensors and other biological system.
电活性细菌在磁场 (MF) 响应方面表现出显著的可塑性,这促使生物电化学系统成为磁传感器应用的有前途的候选者。在这项研究中,我们探索了磁场对硫还原地杆菌电流产生的感应和刺激作用,并在转录组水平上阐明了相关的分子机制。MF 处理分别显著提高了 G. sulfurreducens 的电流产生和整体能量效率 50%和 22%。对电流的 MF 响应是瞬时和可逆的。阳极生物膜的循环伏安分析表明,氧化还原对从-0.31 变为-0.39V(相对于 Ag/AgCl),表明 MF 可以改变与电子传递相关的组件。差异基因表达分析进一步证实了这一假设,MF 处理下 G. sulfurreducens 中与电子传递相关的基因相对于对照组上调,特别是编码周质 c 型细胞色素(ppcA 和 ppcD)、外膜细胞色素(omcF、omcZ、omcB)、菌毛(pilA-C、pilM 和 pilV2)和核糖体的基因。增强的细菌细胞外电子传递过程也与 NADH 脱氢酶 I 亚基、ABC 转运蛋白、转录调节和 ATP 合酶的过表达有关。总的来说,我们的发现揭示了磁场刺激对 EAB 影响的分子机制,并为其在磁传感器和其他生物系统中的进一步应用提供了理论基础。
Microbiology (Reading). 2013-1-10
Environ Microbiol Rep. 2014-9-24
FEMS Microbiol Lett. 2017-5-1
Environ Sci Ecotechnol. 2023-12-27