Suppr超能文献

鼠和猴初级视皮层和前额皮层中表达钙结合蛋白的中间神经元的比较特征。

Comparative features of calretinin, calbindin, and parvalbumin expressing interneurons in mouse and monkey primary visual and frontal cortices.

机构信息

Department of Anatomy & Neurobiology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA.

Center for Systems Neuroscience, Boston University, Boston, Massachusetts, USA.

出版信息

J Comp Neurol. 2023 Dec;531(18):1934-1962. doi: 10.1002/cne.25514. Epub 2023 Jun 26.

Abstract

Fundamental differences in excitatory pyramidal cells across cortical areas and species highlight the implausibility of extrapolation from mouse to primate neurons and cortical networks. Far less is known about comparative regional and species-specific features of neurochemically distinct cortical inhibitory interneurons. Here, we quantified the density, laminar distribution, and somatodendritic morphology of inhibitory interneurons expressing one or more of the calcium-binding proteins (CaBPs) (calretinin [CR], calbindin [CB], and/or parvalbumin [PV]) in mouse (Mus musculus) versus rhesus monkey (Macaca mulatta) in two functionally and cytoarchitectonically distinct regions-the primary visual and frontal cortical areas-using immunofluorescent multilabeling, stereological counting, and 3D reconstructions. There were significantly higher densities of CB+ and PV+ neurons in visual compared to frontal areas in both species. The main species difference was the significantly greater density and proportion of CR+ interneurons and lower extent of CaBP coexpression in monkey compared to mouse cortices. Cluster analyses revealed that the somatodendritic morphology of layer 2-3 inhibitory interneurons is more dependent on CaBP expression than on species and area. Only modest effects of species were observed for CB+ and PV+ interneuron morphologies, while CR+ neurons showed no difference. By contrast to pyramidal cells that show highly distinctive area- and species-specific features, here we found more subtle differences in the distribution and features of interneurons across areas and species. These data yield insight into how nuanced differences in the population organization and properties of neurons may underlie specializations in cortical regions to confer species- and area-specific functional capacities.

摘要

兴奋性锥体神经元在皮质区域和物种间存在根本差异,这突出表明从老鼠神经元和皮质网络外推到灵长类动物是不太可能的。关于具有神经化学特征的皮质抑制性中间神经元的比较区域和种特异性特征,人们知之甚少。在这里,我们使用免疫荧光多重标记、立体学计数和 3D 重建,在两种功能和细胞构筑上不同的区域(初级视觉和额皮质区)中,量化了表达一种或多种钙结合蛋白(CaBPs)(钙调蛋白[CR]、钙结合蛋白[CB]和/或副甲状腺素[PV])的抑制性中间神经元的密度、层分布和体树突形态。在两种物种中,与额皮质区相比,视觉皮质区的 CB+和 PV+神经元密度显著更高。主要的物种差异是,与小鼠皮质相比,猴子皮质中 CR+中间神经元的密度和比例显著更高,而 CaBP 共表达的程度较低。聚类分析表明,层 2-3 抑制性中间神经元的体树突形态更多地依赖于 CaBP 表达,而不是物种和区域。对于 CB+和 PV+中间神经元形态,仅观察到物种的适度影响,而 CR+神经元则没有差异。与表现出高度区域和物种特异性特征的锥体细胞不同,我们在这里发现了跨区域和物种的中间神经元在分布和特征上的更细微差异。这些数据深入了解了神经元群体组织和特性的细微差异如何为皮质区域的特化提供基础,从而赋予物种和区域特定的功能能力。

相似文献

3
Local circuit neurons in the medial prefrontal cortex (areas 24a,b,c, 25 and 32) in the monkey: I. Cell morphology and morphometrics.
J Comp Neurol. 1996 Jan 22;364(4):567-608. doi: 10.1002/(SICI)1096-9861(19960122)364:4<567::AID-CNE1>3.0.CO;2-1.
4
Immunohistochemical characterization of parvalbumin-containing interneurons in the monkey basolateral amygdala.
Neuroscience. 2009 Feb 18;158(4):1541-50. doi: 10.1016/j.neuroscience.2008.11.017. Epub 2008 Nov 17.
5
Quantitative architecture distinguishes prefrontal cortical systems in the rhesus monkey.
Cereb Cortex. 2001 Oct;11(10):975-88. doi: 10.1093/cercor/11.10.975.
8
Relationship of prefrontal connections to inhibitory systems in superior temporal areas in the rhesus monkey.
Cereb Cortex. 2005 Sep;15(9):1356-70. doi: 10.1093/cercor/bhi018. Epub 2005 Jan 5.
9
Local circuit neurons in the medial prefrontal cortex (areas 24a,b,c, 25 and 32) in the monkey: II. Quantitative areal and laminar distributions.
J Comp Neurol. 1996 Jan 22;364(4):609-36. doi: 10.1002/(SICI)1096-9861(19960122)364:4<609::AID-CNE2>3.0.CO;2-7.

引用本文的文献

1
Hippocampal structure, patterns of the calcium-binding proteins and neuron numbers in small echolocating bats.
Front Neuroanat. 2025 Aug 13;19:1641787. doi: 10.3389/fnana.2025.1641787. eCollection 2025.
2
Reduction of inflammatory biomarkers underlies extracellular vesicle mediated functional recovery in an aged monkey model of cortical injury.
Front Aging Neurosci. 2025 Jul 9;17:1605144. doi: 10.3389/fnagi.2025.1605144. eCollection 2025.
3
RNA-programmable cell-type monitoring and manipulation in the human cortex with CellREADR.
Cell Rep. 2025 Aug 26;44(8):116037. doi: 10.1016/j.celrep.2025.116037. Epub 2025 Jul 22.
4
Fate plasticity of interneuron specification.
iScience. 2025 Mar 27;28(4):112295. doi: 10.1016/j.isci.2025.112295. eCollection 2025 Apr 18.
5
Contrasting patterns of extrasynaptic NMDAR-GluN2B expression in macaque subgenual cingulate and dorsolateral prefrontal cortices.
Front Neuroanat. 2025 Apr 4;19:1553056. doi: 10.3389/fnana.2025.1553056. eCollection 2025.
6
RNA-programmable cell type monitoring and manipulation in the human cortex with CellREADR.
bioRxiv. 2024 Dec 6:2024.12.03.626590. doi: 10.1101/2024.12.03.626590.
8
Timescales of learning in prefrontal cortex.
Nat Rev Neurosci. 2024 Sep;25(9):597-610. doi: 10.1038/s41583-024-00836-8. Epub 2024 Jun 27.

本文引用的文献

2
Single-cell transcriptomics and cell-specific proteomics reveals molecular signatures of sleep.
Commun Biol. 2022 Aug 19;5(1):846. doi: 10.1038/s42003-022-03800-3.
3
A transcriptomic axis predicts state modulation of cortical interneurons.
Nature. 2022 Jul;607(7918):330-338. doi: 10.1038/s41586-022-04915-7. Epub 2022 Jul 6.
4
Muscarinic Acetylcholine Receptor Localization on Distinct Excitatory and Inhibitory Neurons Within the ACC and LPFC of the Rhesus Monkey.
Front Neural Circuits. 2022 Jan 11;15:795325. doi: 10.3389/fncir.2021.795325. eCollection 2021.
5
The organization and development of cortical interneuron presynaptic circuits are area specific.
Cell Rep. 2021 Nov 9;37(6):109993. doi: 10.1016/j.celrep.2021.109993.
7
A Quantitative Comparison of Inhibitory Interneuron Size and Distribution between Mouse and Macaque V1, Using Calcium-Binding Proteins.
Cereb Cortex Commun. 2020 Sep 24;1(1):tgaa068. doi: 10.1093/texcom/tgaa068. eCollection 2020.
8
9
Innovations present in the primate interneuron repertoire.
Nature. 2020 Oct;586(7828):262-269. doi: 10.1038/s41586-020-2781-z. Epub 2020 Sep 30.
10
Lessons from single cell sequencing in CNS cell specification and function.
Curr Opin Genet Dev. 2020 Dec;65:138-143. doi: 10.1016/j.gde.2020.05.043. Epub 2020 Jul 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验