Wu Jian-Fang, Zou Zheyi, Pu Bowei, Ladenstein Lukas, Lin Shen, Xie Wenjing, Li Shen, He Bing, Fan Yameng, Pang Wei Kong, Wilkening H Martin R, Guo Xin, Xu Chaohe, Zhang Tao, Shi Siqi, Liu Jilei
College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology of Clean Energy, Hunan Province Key Laboratory for Advanced Carbon Materials and Applied Technology, Hunan University, Changsha, 410082, P. R. China.
School of Materials Science and Engineering, Xiangtan University, Xiangtan, 411105, P. R. China.
Adv Mater. 2023 Oct;35(40):e2303730. doi: 10.1002/adma.202303730. Epub 2023 Aug 15.
The softness of sulfur sublattice and rotational PS tetrahedra in thiophosphates result in liquid-like ionic conduction, leading to enhanced ionic conductivities and stable electrode/thiophosphate interfacial ionic transport. However, the existence of liquid-like ionic conduction in rigid oxides remains unclear, and modifications are deemed necessary to achieve stable Li/oxide solid electrolyte interfacial charge transport. In this study, by combining the neutron diffraction survey, geometrical analysis, bond valence site energy analysis, and ab initio molecular dynamics simulation, 1D liquid-like Li-ion conduction is discovered in LiTa PO and its derivatives, wherein Li-ion migration channels are connected by four- or five-fold oxygen-coordinated interstitial sites. This conduction features a low activation energy (0.2 eV) and short mean residence time (<1 ps) of Li ions on the interstitial sites, originating from the Li-O polyhedral distortion and Li-ion correlation, which are controlled by doping strategies. The liquid-like conduction enables a high ionic conductivity (1.2 mS cm at 30 °C), and a 700 h anomalously stable cycling under 0.2 mA cm for Li/LiTa PO /Li cells without interfacial modifications. These findings provide principles for the future discovery and design of improved solid electrolytes that do not require modifications to the Li/solid electrolyte interface to achieve stable ionic transport.
硫代磷酸盐中硫亚晶格和旋转的PS四面体的柔软性导致了类似液体的离子传导,从而提高了离子电导率,并稳定了电极/硫代磷酸盐界面的离子传输。然而,刚性氧化物中类似液体的离子传导的存在仍不明确,因此认为有必要进行改性以实现稳定的Li/氧化物固体电解质界面电荷传输。在本研究中,通过结合中子衍射测量、几何分析、键价位点能量分析和从头算分子动力学模拟,在LiTaPO及其衍生物中发现了一维类似液体的锂离子传导,其中锂离子迁移通道由四配位或五配位的间隙位点连接。这种传导具有低活化能(0.2 eV)和锂离子在间隙位点上的短平均停留时间(<1 ps),这源于Li-O多面体畸变和锂离子相关性,它们由掺杂策略控制。这种类似液体的传导使得离子电导率较高(30°C时为1.2 mS cm),并且对于未经界面改性的Li/LiTaPO/Li电池,在0.2 mA cm下可实现700小时异常稳定的循环。这些发现为未来发现和设计改进的固体电解质提供了原则,这些固体电解质无需对Li/固体电解质界面进行改性即可实现稳定的离子传输。