AFIN-TS GmbH (Analytisches Forschungsinstitut für Non-Target Screening), Am Mittleren Moos 48, 86167 Augsburg, Germany.
Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius Väg 16, 10691 Stockholm, Sweden.
J Am Soc Mass Spectrom. 2023 Jul 5;34(7):1511-1518. doi: 10.1021/jasms.3c00156. Epub 2023 Jun 26.
Supercritical fluid chromatography (SFC) is a promising, sustainable, and complementary alternative to liquid chromatography (LC) and has often been coupled with high resolution mass spectrometry (HRMS) for nontarget screening (NTS). Recent developments in predicting the ionization efficiency for LC/ESI/HRMS have enabled quantification of chemicals detected in NTS even if the analytical standards of the detected and tentatively identified chemicals are unavailable. This poses the question of whether analytical standard free quantification can also be applied in SFC/ES/HRMS. We evaluate both the possibility to transfer an ionization efficiency predictions model, previously trained on LC/ESI/HRMS data, to SFC/ESI/HRMS as well as training a new predictive model on SFC/ESI/HRMS data for 127 chemicals. The response factors of these chemicals ranged over 4 orders of magnitude in spite of a postcolumn makeup flow, expectedly enhancing the ionization of the analytes. The ionization efficiency values were predicted based on a random forest regression model from PaDEL descriptors and predicted values showed statistically significant correlation with the measured response factors ( < 0.05) with Spearman's rho of 0.584 and 0.669 for SFC and LC data, respectively. Moreover, the most significant descriptors showed similarities independent of the chromatography used for collecting the training data. We also investigated the possibility to quantify the detected chemicals based on predicted ionization efficiency values. The model trained on SFC data showed very high prediction accuracy with median prediction error of 2.20×, while the model pretrained on LC/ESI/HRMS data yielded median prediction error of 5.11×. This is expected, as the training and test data for SFC/ESI/HRMS have been collected on the same instrument with the same chromatography. Still, the correlation observed between response factors measured with SFC/ESI/HRMS and predicted with a model trained on LC data hints that more abundant LC/ESI/HRMS data prove useful in understanding and predicting the ionization behavior in SFC/ESI/HRMS.
超临界流体色谱(SFC)是一种有前途的、可持续的、与液相色谱(LC)互补的替代方法,并且通常与高分辨率质谱(HRMS)结合用于非靶向筛选(NTS)。最近,对 LC/ESI/HRMS 电离效率进行预测的发展,使得即使无法获得所检测和暂定鉴定化学品的分析标准品,也能够对 NTS 中检测到的化学品进行定量。这就提出了一个问题,即无分析标准品的定量是否也可以应用于 SFC/ES/HRMS。我们评估了将先前在 LC/ESI/HRMS 数据上训练的电离效率预测模型转移到 SFC/ESI/HRMS 的可能性,以及在 SFC/ESI/HRMS 数据上为 127 种化学品训练新的预测模型的可能性。尽管存在柱后补加流动,但这些化学品的响应因子在 4 个数量级范围内变化,预计会增强分析物的电离。基于 PaDEL 描述符的随机森林回归模型预测了电离效率值,预测值与实测响应因子呈统计学显著相关(<0.05),SFC 和 LC 数据的 Spearman 相关系数分别为 0.584 和 0.669。此外,最重要的描述符表现出相似性,而与用于收集训练数据的色谱无关。我们还研究了基于预测的电离效率值对检测到的化学品进行定量的可能性。基于 SFC 数据训练的模型具有非常高的预测精度,中位数预测误差为 2.20×,而基于 LC/ESI/HRMS 数据预训练的模型的中位数预测误差为 5.11×。这是预期的,因为 SFC/ESI/HRMS 的训练和测试数据是在同一台仪器上使用相同的色谱法收集的。尽管如此,在 SFC/ESI/HRMS 中测量的响应因子与基于在 LC 数据上训练的模型预测之间观察到的相关性表明,更丰富的 LC/ESI/HRMS 数据有助于理解和预测 SFC/ESI/HRMS 中的电离行为。