Malm Louise, Liigand Jaanus, Aalizadeh Reza, Alygizakis Nikiforos, Ng Kelsey, Fro Kjær Emil Egede, Nanusha Mulatu Yohannes, Hansen Martin, Plassmann Merle, Bieber Stefan, Letzel Thomas, Balest Lydia, Abis Pier Paolo, Mazzetti Michele, Kasprzyk-Hordern Barbara, Ceolotto Nicola, Kumari Sangeeta, Hann Stephan, Kochmann Sven, Steininger-Mairinger Teresa, Soulier Coralie, Mascolo Giuseppe, Murgolo Sapia, Garcia-Vara Manuel, López de Alda Miren, Hollender Juliane, Arturi Katarzyna, Coppola Gianluca, Peruzzo Massimo, Joerss Hanna, van der Neut-Marchand Carla, Pieke Eelco N, Gago-Ferrero Pablo, Gil-Solsona Ruben, Licul-Kucera Viktória, Roscioli Claudio, Valsecchi Sara, Luckute Austeja, Christensen Jan H, Tisler Selina, Vughs Dennis, Meekel Nienke, Talavera Andújar Begoña, Aurich Dagny, Schymanski Emma L, Frigerio Gianfranco, Macherius André, Kunkel Uwe, Bader Tobias, Rostkowski Pawel, Gundersen Hans, Valdecanas Belinda, Davis W Clay, Schulze Bastian, Kaserzon Sarit, Pijnappels Martijn, Esperanza Mar, Fildier Aurélie, Vulliet Emmanuelle, Wiest Laure, Covaci Adrian, Macan Schönleben Alicia, Belova Lidia, Celma Alberto, Bijlsma Lubertus, Caupos Emilie, Mebold Emmanuelle, Le Roux Julien, Troia Eugenie, de Rijke Eva, Helmus Rick, Leroy Gaëla, Haelewyck Niels, Chrastina David, Verwoert Milan, Thomaidis Nikolaos S, Kruve Anneli
Department of Materials and Environmental Chemistry, Stockholm University, Svante Arrhenius väg 16, 11418 Stockholm, Sweden.
Quantem Analytics, 51008 Tartu, Estonia.
Anal Chem. 2024 Oct 15;96(41):16215-16226. doi: 10.1021/acs.analchem.4c02902. Epub 2024 Oct 1.
Nontargeted screening (NTS) utilizing liquid chromatography electrospray ionization high-resolution mass spectrometry (LC/ESI/HRMS) is increasingly used to identify environmental contaminants. Major differences in the ionization efficiency of compounds in ESI/HRMS result in widely varying responses and complicate quantitative analysis. Despite an increasing number of methods for quantification without authentic standards in NTS, the approaches are evaluated on limited and diverse data sets with varying chemical coverage collected on different instruments, complicating an unbiased comparison. In this interlaboratory comparison, organized by the NORMAN Network, we evaluated the accuracy and performance variability of five quantification approaches across 41 NTS methods from 37 laboratories. Three approaches are based on surrogate standard quantification (parent-transformation product, structurally similar or close eluting) and two on predicted ionization efficiencies (RandFor- and MLR-). Shortly, HPLC grade water, tap water, and surface water spiked with 45 compounds at 2 concentration levels were analyzed together with 41 calibrants at 6 known concentrations by the laboratories using in-house NTS workflows. The accuracy of the approaches was evaluated by comparing the estimated and spiked concentrations across quantification approaches, instrumentation, and laboratories. The RandFor- approach performed best with a reported mean prediction error of 15× and over 83% of compounds quantified within 10× error. Despite different instrumentation and workflows, the performance was stable across laboratories and did not depend on the complexity of water matrices.
利用液相色谱电喷雾电离高分辨率质谱法(LC/ESI/HRMS)进行的非靶向筛查(NTS)越来越多地用于识别环境污染物。ESI/HRMS中化合物电离效率的重大差异导致响应差异很大,使定量分析变得复杂。尽管在NTS中越来越多的方法用于在没有真实标准品的情况下进行定量,但这些方法是在有限且多样的数据集上进行评估的,这些数据集具有在不同仪器上收集的不同化学覆盖范围,这使得无偏比较变得复杂。在由诺曼网络组织的这次实验室间比较中,我们评估了来自37个实验室的41种NTS方法中五种定量方法的准确性和性能变异性。三种方法基于替代标准定量(母体-转化产物、结构相似或洗脱相近),两种基于预测电离效率(随机森林法和多元线性回归法)。简而言之,各实验室使用内部NTS工作流程,对添加了2种浓度水平的45种化合物的HPLC级水、自来水和地表水以及6种已知浓度的41种校准物进行了分析。通过比较不同定量方法、仪器和实验室之间的估计浓度和加标浓度,评估了这些方法的准确性。随机森林法表现最佳,报告的平均预测误差为15倍,超过83%的化合物在10倍误差内定量。尽管仪器和工作流程不同,但各实验室的性能稳定,且不依赖于水基质的复杂性。