Suppr超能文献

审视金融领域人工智能、深度学习与机器学习的研究分类——一项文献计量分析。

Examining the research taxonomy of artificial intelligence, deep learning & machine learning in the financial sphere-a bibliometric analysis.

作者信息

Biju Ajitha Kumari Vijayappan Nair, Thomas Ann Susan, Thasneem J

机构信息

Department of Commerce, School of Business Management and Legal Studies, University of Kerala, Kerala, India.

出版信息

Qual Quant. 2023 May 2:1-30. doi: 10.1007/s11135-023-01673-0.

Abstract

This paper surveys the extant literature on machine learning, artificial intelligence, and deep learning mechanisms within the financial sphere using bibliometric methods. We considered the conceptual and social structure of publications in ML, AI, and DL in finance to better understand the research's status, development, and growth. The study finds an upsurge in publication trends within this research arena, with a bit of concentration around the financial domain. The institutional contributions from USA and China constitute much of the literature on applying ML and AI in finance. Our analysis identifies emerging research themes, with the most futuristic being ESG scoring using ML and AI. However, we find there is a lack of empirical academic research with a critical appraisal of these algorithmic-based advanced automated financial technologies. There are severe pitfalls in the prediction process using ML and AI due to algorithmic biases, mostly in the areas of insurance, credit scoring and mortgages. Thus, this study indicates the next evolution of ML and DL archetypes in the economic sphere and the need for a strategic turnaround in academics regarding these forces of disruption and innovation that are shaping the future of finance.

摘要

本文运用文献计量方法,对金融领域内有关机器学习、人工智能和深度学习机制的现有文献进行了综述。我们考量了金融领域中机器学习、人工智能和深度学习领域出版物的概念和社会结构,以便更好地理解该研究的现状、发展和增长情况。研究发现,这一研究领域的出版物趋势呈上升态势,且在金融领域有一定的集中性。美国和中国的机构贡献了大量关于在金融领域应用机器学习和人工智能的文献。我们的分析确定了新兴的研究主题,其中最具前瞻性的是使用机器学习和人工智能进行ESG评分。然而,我们发现缺乏对这些基于算法的先进自动化金融技术进行批判性评估的实证学术研究。由于算法偏差,在使用机器学习和人工智能的预测过程中存在严重缺陷,主要集中在保险、信用评分和抵押贷款领域。因此,本研究指出了机器学习和深度学习原型在经济领域的下一步发展方向,以及学术界针对这些正在塑造金融未来的破坏和创新力量进行战略转变的必要性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/eba3/10153784/4e0ba24b3c17/11135_2023_1673_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验