Suppr超能文献

通过后验预测检验评估多重填补模型的图形和数值诊断工具。

Graphical and numerical diagnostic tools to assess multiple imputation models by posterior predictive checking.

作者信息

Cai Mingyang, van Buuren Stef, Vink Gerko

机构信息

Department of Methodology and Statistics, Utrecht University, Utrecht, the Netherlands.

出版信息

Heliyon. 2023 Jun 13;9(6):e17077. doi: 10.1016/j.heliyon.2023.e17077. eCollection 2023 Jun.

Abstract

PROBLEM

The congenial of the imputation model is crucial for valid statistical inferences. Hence, it is important to develop methodologies for diagnosing imputation models.

AIM

We propose and evaluate a new diagnostic method based on posterior predictive checking to diagnose the congeniality of fully conditional imputation models. Our method applies to multiple imputation by chained equations, which is widely used in statistical software.

METHODS

The proposed method compares the observed data with their replicates generated under the corresponding posterior predictive distributions to diagnose the performance of imputation models. The method applies to various imputation models, including parametric and semi-parametric approaches and continuous and discrete incomplete variables. We studied the validity of the method through simulation and application.

RESULTS

The proposed diagnostic method based on posterior predictive checking demonstrates its validity in assessing the performance of imputation models. The method can diagnose the consistency of imputation models with the substantive model and can be applied to a broad range of research contexts.

CONCLUSION

The diagnostic method based on posterior predictive checking provides a valuable tool for researchers who use fully conditional specification to handle missing data. By assessing the performance of imputation models, our method can help researchers improve the accuracy and reliability of their analyzes. Furthermore, our method applies to different imputation models. Hence, it is a versatile and valuable tool for researchers identifying plausible imputation models.

摘要

问题

归因模型的一致性对于有效的统计推断至关重要。因此,开发用于诊断归因模型的方法很重要。

目的

我们提出并评估一种基于后验预测检验的新诊断方法,以诊断完全条件归因模型的一致性。我们的方法适用于链式方程多重插补,该方法在统计软件中广泛使用。

方法

所提出的方法将观察到的数据与其在相应后验预测分布下生成的重复数据进行比较,以诊断归因模型的性能。该方法适用于各种归因模型,包括参数和半参数方法以及连续和离散的不完全变量。我们通过模拟和应用研究了该方法的有效性。

结果

所提出的基于后验预测检验的诊断方法在评估归因模型的性能方面证明了其有效性。该方法可以诊断归因模型与实质模型的一致性,并且可以应用于广泛的研究背景。

结论

基于后验预测检验的诊断方法为使用完全条件规范处理缺失数据的研究人员提供了一个有价值的工具。通过评估归因模型的性能,我们的方法可以帮助研究人员提高其分析的准确性和可靠性。此外,我们的方法适用于不同的归因模型。因此,它是研究人员识别合理归因模型的一种通用且有价值的工具。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/05bc/10285146/5a2eb20bcecc/gr001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验