Ul Haq Z, Mehmood U, Tariq S, Hanif A, Nawaz H
Remote Sensing, GIS and Climatic Research Lab, National Center of GIS and Space Applications, Centre for Remote Sensing, University of the Punjab, New-Campus, Lahore, Pakistan.
Department of political science, University of management and technology, Lahore, Pakistan.
Int J Environ Sci Technol (Tehran). 2023 Jun 8:1-22. doi: 10.1007/s13762-023-04997-4.
This research focuses on the impacts of different meteorological parameters (temperature, humidity, rainfall, and evapotranspiration) on the transmission of Covid-19 in the administrative regions and provinces of Pakistan, i.e., Azad Jammu and Kashmir, Gilgit Baltistan, Khyber Pakhtunkhwa, Islamabad, Punjab, Sindh, and Balochistan from June 10, 2020, to August 31, 2021. This study analyzes the relation between Covid-19-confirmed cases and the meteorological parameters with the help of the autoregressive distributed lag model. In this research, additional tools (t-statistics, f-statistics, and time series analysis) are used for the motive of examining the linear relationship, the productivity of the model, and for the significant association between dependent and independent variables, lnccc and lnevp, lnhum, lnrain, lntemp, respectively. Values of t-statistics and f-statistics reveal that variables have a connection and individual significance for the model exist. Time series display that the Covid-19 spread increased from June 10, 2020, to August 31, 2021, in Pakistan. Temperature positively influenced the Covid-19-confirmed cases in all provinces of Pakistan in the long run. Evapotranspiration and rainfall influenced positively, while specific humidity influenced negatively on the confirmed Covid-19 cases in Azad Jammu Kashmir, Khyber Pakhtunkhwa, and Punjab. Specific humidity had a positive impact, while evapotranspiration and rainfall had the negative impact on the Covid-19-confirmed cases in Sindh and Balochistan. Evapotranspiration and specific humidity influenced positively, while rainfall influenced the Covid-19-confirmed cases negatively in Gilgit Baltistan. Evapotranspiration influenced positively, while specific humidity and rainfall influenced negatively on the Covid-19-confirmed cases in Islamabad.
The online version contains supplementary material available at 10.1007/s13762-023-04997-4.
本研究聚焦于2020年6月10日至2021年8月31日期间,不同气象参数(温度、湿度、降雨量和蒸发散)对巴基斯坦各行政区和省份(即阿扎德克什米尔、吉尔吉特-巴尔蒂斯坦、开伯尔-普赫图赫瓦省、伊斯兰堡、旁遮普省、信德省和俾路支省)新冠病毒传播的影响。本研究借助自回归分布滞后模型分析新冠确诊病例与气象参数之间的关系。在本研究中,还使用了其他工具(t统计量、f统计量和时间序列分析)来检验线性关系、模型的有效性以及因变量与自变量(分别为lnccc和lnevp、lnhum、lnrain、lntemp)之间的显著关联。t统计量和f统计量的值表明变量之间存在联系且对模型具有个体显著性。时间序列显示,2020年6月10日至2021年8月31日期间,巴基斯坦的新冠病毒传播有所增加。从长远来看,温度对巴基斯坦所有省份的新冠确诊病例有正向影响。在阿扎德克什米尔、开伯尔-普赫图赫瓦省和旁遮普省,蒸发散和降雨量有正向影响,而比湿对新冠确诊病例有负向影响。在信德省和俾路支省,比湿有正向影响,而蒸发散和降雨量对新冠确诊病例有负向影响。在吉尔吉特-巴尔蒂斯坦,蒸发散和比湿有正向影响,而降雨量对新冠确诊病例有负向影响。在伊斯兰堡,蒸发散有正向影响,而比湿和降雨量对新冠确诊病例有负向影响。
网络版包含可在10.1007/s13762-023-04997-4获取的补充材料。