Gao Ya, Zhao Yunli, Zhang Xi, Tian Jinhui, Guyatt Gordon, Hao Qiukui
Evidence-Based Medicine Center, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China.
Department of Health Research Methods, Evidence, and Impact, McMaster University, Hamilton, ON, Canada.
EClinicalMedicine. 2023 Jul;61:102058. doi: 10.1016/j.eclinm.2023.102058. Epub 2023 Jun 22.
The optimal isolation duration for patients with COVID-19 remains unclear. To support an update of World Health Organization (WHO)'s Living Clinical management guidelines for COVID-19 (https://www.who.int/publications/i/item/WHO-2019-nCoV-clinical-2022.2), this rapid systematic review and modelling study addresses the effects of different isolation periods for preventing onward transmission leading to hospitalisation and death among secondary cases.
We searched the WHO COVID-19 database for studies up to Feb 27, 2023. We included clinical studies of any design with COVID-19 patients confirmed by PCR test or rapid antigen test addressing the impact of any isolation strategy on preventing the spread of COVID-19. There were no restrictions on publication language, publication status, age of patients, severity of COVID-19, variants of SARS-COV-2, comorbidity of patients, isolation location, or co-interventions. We performed random-effects meta-analyses to summarise testing rates of persistent test positivity rates after COVID-19 infection. We performed pre-specified subgroup analyses by symptom status and meta-regression analyses for the proportion of fully vaccinated patients. We developed a model to compare the effects of three isolation strategies on onward transmission leading to hospitalisation and death. The three isolation strategies were (1) 5-day isolation, with no test to release; (2) removal of isolation based on a negative test; and (3) 10-day isolation, with no test to release. The model incorporates estimates of test positivity rates, effective reproduction number, isolation adherence, false negative rate, and hospitalisation rates or case fatality rates. To assess the impact of varying isolation adherence and false negative rates on rapid antigen testing, we conducted some sensitivity analyses. We used the Grading of Recommendations Assessment, Development and Evaluation approach to assess certainty of evidence. The protocol is registered with PROSPERO (CRD42022348626).
Fifteen studies addressing persistent test positivity rates including 4188 patients proved eligible. Asymptomatic patients (27.1%, 95% CI: 15.8%-40.0%) had a significantly lower rapid antigen test positive rate than symptomatic patients (68.1%, 95% CI: 40.6%-90.3%) on day 5. The rapid antigen test positive rate was 21.5% (95% CI: 0-64.1%; moderate certainty) on day 10. Our modelling study suggested that the risk difference (RD) for asymptomatic patients between 5-day isolation and 10-day isolation in hospitalisations (23 more hospitalisations of secondary cases per 10,000 patients isolated, 95% uncertainty interval (UI) 14 more to 33 more) and mortality (5 more per 10,000 patients, 95% UI 1 to 9 more) of secondary cases proved very small (very low certainty). For symptomatic patients, the potential impact of 5- versus 10-day isolation was much greater in hospitalisations (RD 186 more per 10,000 patients, 95% UI 113 more to 276 more; very low certainty) and mortality (RD 41 more per 10,000 patients, 95% UI 11 more to 73 more; very low certainty). There may be little or no difference between removing isolation based on a negative antigen test and 10-day isolation in the onward transmission leading to hospitalisation or death, but the average isolation period (mean difference -3 days) will be shorter for the removal of isolation based on a negative antigen test (moderate certainty).
5 days versus 10 days of isolation in asymptomatic patients may result in a small amount of onward transmission and negligible hospitalisation and mortality; however, in symptomatic patients, the level of onward transmission is concerning and may lead to high hospitalisation and death rates. The evidence is, however, very uncertain.
This work was done in collaboration with WHO.
新型冠状病毒肺炎(COVID-19)患者的最佳隔离时长仍不明确。为支持更新世界卫生组织(WHO)的《COVID-19临床管理实用指南》(https://www.who.int/publications/i/item/WHO-2019-nCoV-clinical-2022.2),本快速系统评价和建模研究探讨了不同隔离期对预防二代病例中导致住院和死亡的病毒传播的影响。
我们检索了WHO COVID-19数据库,纳入截至2023年2月27日的研究。我们纳入了任何设计的临床研究,这些研究的对象为经PCR检测或快速抗原检测确诊的COVID-19患者,研究内容为任何隔离策略对预防COVID-19传播的影响。对发表语言、发表状态、患者年龄、COVID-19严重程度、严重急性呼吸综合征冠状病毒2(SARS-CoV-2)变异株、患者合并症、隔离地点或联合干预措施均无限制。我们进行随机效应荟萃分析,以总结COVID-19感染后持续检测阳性率的检测率。我们按症状状态进行了预先设定的亚组分析,并对全程接种疫苗患者的比例进行了Meta回归分析。我们开发了一个模型,以比较三种隔离策略对导致住院和死亡的病毒传播的影响。这三种隔离策略分别为:(1)5天隔离,不进行检测以解除隔离;(2)基于阴性检测结果解除隔离;(3)10天隔离,不进行检测以解除隔离。该模型纳入了检测阳性率、有效再生数、隔离依从性、假阴性率以及住院率或病死率的估计值。为评估不同隔离依从性和假阴性率对快速抗原检测的影响,我们进行了一些敏感性分析。我们采用推荐分级评估、制定与评价方法来评估证据的确定性。该方案已在国际前瞻性注册系统(PROSPERO)注册(CRD42022348626)。
15项涉及持续检测阳性率的研究(包括4188例患者)被证明符合纳入标准。无症状患者在第5天的快速抗原检测阳性率(27.1%,95%CI:15.8% - 40.0%)显著低于有症状患者(68.1%,95%CI:40.6% - 90.3%)。第10天的快速抗原检测阳性率为21.5%(CI:0 - 64.1%;中等确定性)。我们的建模研究表明,无症状患者在5天隔离和10天隔离之间,二代病例的住院风险差异(RD)(每10000例隔离患者中,二代病例多23例住院,95%不确定区间(UI)多14例至多33例)和死亡风险差异(每10000例患者中多5例,95%UI多1例至多9例)非常小(极低确定性)。对于有症状患者,5天隔离与10天隔离相比,在住院方面的潜在影响更大(RD每10000例患者多186例,95%UI多113例至多276例;极低确定性),在死亡方面也是如此(RD每10000例患者多41例,95%UI多11例至多73例;极低确定性)。基于阴性抗原检测结果解除隔离与10天隔离在导致住院或死亡的病毒传播方面可能几乎没有差异,但基于阴性抗原检测结果解除隔离的平均隔离期(平均差 -3天)会更短(中等确定性)。
无症状患者隔离5天与隔离10天相比,可能会导致少量的病毒传播,且住院和死亡风险可忽略不计;然而,对于有症状患者,病毒传播水平令人担忧,可能导致高住院率和高死亡率。不过,证据非常不确定。
本研究由与世卫组织合作开展。