Mele Marco, Imbrici Paola, Mele Antonietta, Togo Maria Vittoria, Dinoi Giorgia, Correale Michele, Brunetti Natale Daniele, Nicolotti Orazio, De Luca Annamaria, Altomare Cosimo Damiano, Liantonio Antonella, Amoroso Nicola
Department of Pharmacy-Drug Sciences, University of Bari, Bari, Italy.
University Hospital Policlinico Riuniti, Foggia, Italy.
Front Pharmacol. 2023 Jun 9;14:1175606. doi: 10.3389/fphar.2023.1175606. eCollection 2023.
Sodium-glucose cotransporter type 2 inhibitors (SGLT2i), gliflozins, play an emerging role for the treatment of heart failure with reduced left ventricular ejection fraction (HFrEF). Nevertheless, the effects of SGLT2i on ventricular remodeling and function have not been completely understood yet. Explainable artificial intelligence represents an unprecedented explorative option to clinical research in this field. Based on echocardiographic evaluations, we identified some key clinical responses to gliflozins by employing a machine learning approach. Seventy-eight consecutive diabetic outpatients followed for HFrEF were enrolled in the study. Using a random forests classification, a single subject analysis was performed to define the profile of patients treated with gliflozins. An explainability analysis using Shapley values was used to outline clinical parameters that mostly improved after gliflozin therapy and machine learning runs highlighted specific variables predictive of gliflozin response. The five-fold cross-validation analyses showed that gliflozins patients can be identified with a 0.70 ± 0.03% accuracy. The most relevant parameters distinguishing gliflozins patients were Right Ventricular S'-Velocity, Left Ventricular End Systolic Diameter and E/e' ratio. In addition, low Tricuspid Annular Plane Systolic Excursion values along with high Left Ventricular End Systolic Diameter and End Diastolic Volume values were associated to lower gliflozin efficacy in terms of anti-remodeling effects. In conclusion, a machine learning analysis on a population of diabetic patients with HFrEF showed that SGLT2i treatment improved left ventricular remodeling, left ventricular diastolic and biventricular systolic function. This cardiovascular response may be predicted by routine echocardiographic parameters, with an explainable artificial intelligence approach, suggesting a lower efficacy in case of advanced stages of cardiac remodeling.
钠-葡萄糖协同转运蛋白2抑制剂(SGLT2i),即格列净类药物,在治疗左心室射血分数降低的心力衰竭(HFrEF)中发挥着越来越重要的作用。然而,SGLT2i对心室重塑和功能的影响尚未完全明确。可解释人工智能为该领域的临床研究提供了前所未有的探索选择。基于超声心动图评估,我们采用机器学习方法确定了对格列净类药物的一些关键临床反应。连续纳入78例因HFrEF接受随访的糖尿病门诊患者进行研究。使用随机森林分类法进行单受试者分析,以确定接受格列净类药物治疗患者的特征。使用基于夏普利值的可解释性分析来勾勒格列净治疗后改善最明显的临床参数,机器学习运行突出显示了预测格列净反应的特定变量。五重交叉验证分析表明,识别格列净类药物治疗患者的准确率为0.70±0.03%。区分格列净类药物治疗患者的最相关参数是右心室S'速度、左心室收缩末期内径和E/e'比值。此外,较低的三尖瓣环平面收缩期位移值以及较高的左心室收缩末期内径和舒张末期容积值与格列净在抗重塑作用方面的较低疗效相关。总之,对一组HFrEF糖尿病患者进行的机器学习分析表明,SGLT2i治疗改善了左心室重塑、左心室舒张功能和双心室收缩功能。这种心血管反应可以通过常规超声心动图参数,采用可解释人工智能方法进行预测,提示在心脏重塑晚期疗效较低。