文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

人工智能和机器学习在创建预测器、增强分子理解和实施有目的的心肌恢复计划中的作用。

Role of Artificial Intelligence and Machine Learning to Create Predictors, Enhance Molecular Understanding, and Implement Purposeful Programs for Myocardial Recovery.

机构信息

NewYork-Presbyterian/Columbia University Irving Medical Center, New York, New York, US.

Weill Cornell Medicine, New York, New York, US.

出版信息

Methodist Debakey Cardiovasc J. 2024 Aug 20;20(4):76-87. doi: 10.14797/mdcvj.1392. eCollection 2024.


DOI:10.14797/mdcvj.1392
PMID:39184156
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11342843/
Abstract

Heart failure (HF) affects millions of individuals and causes hundreds of thousands of deaths each year in the United States. Despite the public health burden, medical and device therapies for HF significantly improve clinical outcomes and, in a subset of patients, can cause reversal of abnormalities in cardiac structure and function, termed "myocardial recovery." By identifying novel patterns in high-dimensional data, artificial intelligence (AI) and machine learning (ML) algorithms can enhance the identification of key predictors and molecular drivers of myocardial recovery. Emerging research in the area has begun to demonstrate exciting results that could advance the standard of care. Although major obstacles remain to translate this technology to clinical practice, AI and ML hold the potential to usher in a new era of purposeful myocardial recovery programs based on precision medicine. In this review, we discuss applications of ML to the prediction of myocardial recovery, potential roles of ML in elucidating the mechanistic basis underlying recovery, barriers to the implementation of ML in clinical practice, and areas for future research.

摘要

心力衰竭(HF)影响着数以百万计的个体,并导致美国每年数十万人死亡。尽管存在公共卫生负担,但 HF 的医学和设备治疗可显著改善临床结果,并且在一部分患者中可导致心脏结构和功能异常的逆转,称为“心肌恢复”。通过在高维数据中识别新颖模式,人工智能(AI)和机器学习(ML)算法可以增强对心肌恢复的关键预测因子和分子驱动因素的识别。该领域的新兴研究已经开始展示令人兴奋的结果,这些结果可能会推动标准治疗方法的发展。尽管将这项技术转化为临床实践仍然存在重大障碍,但 AI 和 ML 有可能开创基于精准医学的有目的的心肌恢复计划的新时代。在这篇综述中,我们讨论了 ML 在预测心肌恢复中的应用、ML 在阐明恢复背后的机制基础方面的潜在作用、将 ML 应用于临床实践的障碍,以及未来的研究领域。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7c2/11342843/8e8addc062d3/mdcvj-20-4-1392-g2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7c2/11342843/90037abeb1f1/mdcvj-20-4-1392-g1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7c2/11342843/8e8addc062d3/mdcvj-20-4-1392-g2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7c2/11342843/90037abeb1f1/mdcvj-20-4-1392-g1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c7c2/11342843/8e8addc062d3/mdcvj-20-4-1392-g2.jpg

相似文献

[1]
Role of Artificial Intelligence and Machine Learning to Create Predictors, Enhance Molecular Understanding, and Implement Purposeful Programs for Myocardial Recovery.

Methodist Debakey Cardiovasc J. 2024

[2]
Artificial Intelligence in Heart Failure and Acute Kidney Injury: Emerging Concepts and Controversial Dimensions.

Cardiorenal Med. 2024

[3]
Artificial intelligence and heart failure: A state-of-the-art review.

Eur J Heart Fail. 2023-9

[4]
Application of Artificial Intelligence in Acute Coronary Syndrome: A Brief Literature Review.

Adv Ther. 2021-10

[5]
Machine learning, artificial intelligence and mechanical circulatory support: A primer for clinicians.

J Heart Lung Transplant. 2021-6

[6]
Artificial intelligence in the diagnosis and detection of heart failure: the past, present, and future.

Rev Cardiovasc Med. 2021-12-22

[7]
Current Status and Future Directions: The Application of Artificial Intelligence/Machine Learning for Precision Medicine.

Clin Pharmacol Ther. 2024-4

[8]
Emerging applications of machine learning in genomic medicine and healthcare.

Crit Rev Clin Lab Sci. 2024-3

[9]
Precision Psychiatry Applications with Pharmacogenomics: Artificial Intelligence and Machine Learning Approaches.

Int J Mol Sci. 2020-2-1

[10]
Implementing Artificial Intelligence and Digital Health in Resource-Limited Settings? Top 10 Lessons We Learned in Congenital Heart Defects and Cardiology.

OMICS. 2020-5

本文引用的文献

[1]
Deep learning to detect left ventricular structural abnormalities in chest X-rays.

Eur Heart J. 2024-6-7

[2]
Use of Artificial Intelligence in Improving Outcomes in Heart Disease: A Scientific Statement From the American Heart Association.

Circulation. 2024-4-2

[3]
Incidence, Outcomes, and Opportunity for Left Ventricular Assist Device Weaning for Myocardial Recovery.

JACC Heart Fail. 2024-5

[4]
Right heart failure after durable left ventricular assist device implantation.

Expert Rev Med Devices. 2024-3

[5]
Artificial intelligence methods for improved detection of undiagnosed heart failure with preserved ejection fraction.

Eur J Heart Fail. 2024-2

[6]
Machine learning-based biomarker profile derived from 4210 serially measured proteins predicts clinical outcome of patients with heart failure.

Eur Heart J Digit Health. 2023-10-4

[7]
Multiomics Analysis Provides Novel Pathways Related to Progression of Heart Failure.

J Am Coll Cardiol. 2023-11-14

[8]
Automatic measurements of left ventricular volumes and ejection fraction by artificial intelligence: clinical validation in real time and large databases.

Eur Heart J Cardiovasc Imaging. 2024-2-22

[9]
Treatment response to spironolactone in patients with heart failure with preserved ejection fraction: a machine learning-based analysis of two randomized controlled trials.

EBioMedicine. 2023-10

[10]
Left ventricular remodeling response to SGLT2 inhibitors in heart failure: an updated meta-analysis of randomized controlled studies.

Cardiovasc Diabetol. 2023-9-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索