NewYork-Presbyterian/Columbia University Irving Medical Center, New York, New York, US.
Weill Cornell Medicine, New York, New York, US.
Methodist Debakey Cardiovasc J. 2024 Aug 20;20(4):76-87. doi: 10.14797/mdcvj.1392. eCollection 2024.
Heart failure (HF) affects millions of individuals and causes hundreds of thousands of deaths each year in the United States. Despite the public health burden, medical and device therapies for HF significantly improve clinical outcomes and, in a subset of patients, can cause reversal of abnormalities in cardiac structure and function, termed "myocardial recovery." By identifying novel patterns in high-dimensional data, artificial intelligence (AI) and machine learning (ML) algorithms can enhance the identification of key predictors and molecular drivers of myocardial recovery. Emerging research in the area has begun to demonstrate exciting results that could advance the standard of care. Although major obstacles remain to translate this technology to clinical practice, AI and ML hold the potential to usher in a new era of purposeful myocardial recovery programs based on precision medicine. In this review, we discuss applications of ML to the prediction of myocardial recovery, potential roles of ML in elucidating the mechanistic basis underlying recovery, barriers to the implementation of ML in clinical practice, and areas for future research.
心力衰竭(HF)影响着数以百万计的个体,并导致美国每年数十万人死亡。尽管存在公共卫生负担,但 HF 的医学和设备治疗可显著改善临床结果,并且在一部分患者中可导致心脏结构和功能异常的逆转,称为“心肌恢复”。通过在高维数据中识别新颖模式,人工智能(AI)和机器学习(ML)算法可以增强对心肌恢复的关键预测因子和分子驱动因素的识别。该领域的新兴研究已经开始展示令人兴奋的结果,这些结果可能会推动标准治疗方法的发展。尽管将这项技术转化为临床实践仍然存在重大障碍,但 AI 和 ML 有可能开创基于精准医学的有目的的心肌恢复计划的新时代。在这篇综述中,我们讨论了 ML 在预测心肌恢复中的应用、ML 在阐明恢复背后的机制基础方面的潜在作用、将 ML 应用于临床实践的障碍,以及未来的研究领域。
Eur J Heart Fail. 2023-9
J Heart Lung Transplant. 2021-6
Rev Cardiovasc Med. 2021-12-22
Crit Rev Clin Lab Sci. 2024-3
Eur Heart J. 2024-6-7
Expert Rev Med Devices. 2024-3
J Am Coll Cardiol. 2023-11-14
Eur Heart J Cardiovasc Imaging. 2024-2-22