Bordoloi Monali, Biswas Saroj Kumar
School of Computer Science and Engineering, VIT-AP University, Inavolu, Amaravati, Andhra Pradesh 522237 India.
Computer Science and Engineering Department, NIT Silchar, NIT Road, Silchar, Assam 788010 India.
Artif Intell Rev. 2023 Mar 20:1-56. doi: 10.1007/s10462-023-10442-2.
Sentiment analysis is a solution that enables the extraction of a summarized opinion or minute sentimental details regarding any topic or context from a voluminous source of data. Even though several research papers address various sentiment analysis methods, implementations, and algorithms, a paper that includes a thorough analysis of the process for developing an efficient sentiment analysis model is highly desirable. Various factors such as extraction of relevant sentimental words, proper classification of sentiments, dataset, data cleansing, etc. heavily influence the performance of a sentiment analysis model. This survey presents a systematic and in-depth knowledge of different techniques, algorithms, and other factors associated with designing an effective sentiment analysis model. The paper performs a critical assessment of different modules of a sentiment analysis framework while discussing various shortcomings associated with the existing methods or systems. The paper proposes potential multidisciplinary application areas of sentiment analysis based on the contents of data and provides prospective research directions.
情感分析是一种解决方案,它能够从大量数据来源中提取关于任何主题或上下文的总结性观点或细微的情感细节。尽管有几篇研究论文讨论了各种情感分析方法、实现方式和算法,但非常需要一篇对开发高效情感分析模型的过程进行全面分析的论文。诸如相关情感词的提取、情感的正确分类、数据集、数据清理等各种因素对情感分析模型的性能有很大影响。本综述提供了与设计有效情感分析模型相关的不同技术、算法和其他因素的系统且深入的知识。本文在讨论现有方法或系统存在的各种缺点的同时,对情感分析框架的不同模块进行了批判性评估。本文基于数据内容提出了情感分析潜在的多学科应用领域,并提供了前瞻性的研究方向。