Kumar Mahander, Khan Lal, Chang Hsien-Tsung
Department of Computer Science, Mir Chakar Khan Rind University, Sibi, Balochistan, Pakistan.
Department of Computer Science, IBADAT Internationl University Islamabad, Pakpattan Campus, Pakistan.
PeerJ Comput Sci. 2025 Jan 28;11:e2592. doi: 10.7717/peerj-cs.2592. eCollection 2025.
With the rapid expansion of social media and e-commerce platforms, an unprecedented volume of user-generated content has emerged, offering organizations, governments, and researchers invaluable insights into public sentiment. Yet, the vast and unstructured nature of this data challenges traditional analysis methods. Sentiment analysis, a specialized field within natural language processing, has evolved to meet these challenges by automating the detection and categorization of opinions and emotions in text. This review comprehensively examines the evolving techniques in sentiment analysis, detailing foundational processes such as data gathering and feature extraction. It explores a spectrum of methodologies, from classical word embedding techniques and machine learning algorithms to recent contextual embedding and advanced transformer models like Generative Pre-trained Transformer (GPT), Bidirectional Encoder Representations from Transformers (BERT), and T5. With a critical comparison of these methods, this article highlights their appropriate uses and limitations. Additionally, the review provides a thorough overview of current trends, insights into future directions, and a critical exploration of unresolved challenges. By synthesizing these developments, this review equips researchers with a solid foundation for assessing the current state of sentiment analysis and guiding future advancements in this dynamic field.
随着社交媒体和电子商务平台的迅速扩张,出现了前所未有的大量用户生成内容,为组织、政府和研究人员提供了关于公众情绪的宝贵见解。然而,这些数据的海量和非结构化性质对传统分析方法构成了挑战。情感分析作为自然语言处理中的一个专业领域,已发展起来以通过自动检测和分类文本中的观点和情感来应对这些挑战。本综述全面考察了情感分析中不断发展的技术,详细介绍了诸如数据收集和特征提取等基础过程。它探讨了一系列方法,从经典的词嵌入技术和机器学习算法到最近的上下文嵌入以及像生成式预训练变换器(GPT)、来自变换器的双向编码器表示(BERT)和T5这样的先进变换器模型。通过对这些方法的批判性比较,本文突出了它们的适用情况和局限性。此外,该综述全面概述了当前趋势、对未来方向的见解以及对未解决挑战的批判性探讨。通过综合这些进展,本综述为研究人员评估情感分析的当前状态并指导这一动态领域的未来发展奠定了坚实基础。