Beckmann John, Gillespie Joe, Tauritz Daniel
Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States.
Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, Baltimore, MD, United States.
Front Microbiol. 2023 Jun 9;14:1116766. doi: 10.3389/fmicb.2023.1116766. eCollection 2023.
Evolutionary algorithms (EAs) simulate Darwinian evolution and adeptly mimic natural evolution. Most EA applications in biology encode high levels of abstraction in top-down population ecology models. In contrast, our research merges protein alignment algorithms from bioinformatics into codon based EAs that simulate molecular protein string evolution from the bottom up. We apply our EA to reconcile a problem in the field of induced cytoplasmic incompatibility (CI). is a microbial endosymbiont that lives inside insect cells. CI is conditional insect sterility that operates as a toxin antidote (TA) system. Although, CI exhibits complex phenotypes not fully explained under a single discrete model. We instantiate in-silico genes that control CI, CI factors (), as strings within the EA chromosome. We monitor the evolution of their enzymatic activity, binding, and cellular localization by applying selective pressure on their primary amino acid strings. Our model helps rationalize why two distinct mechanisms of CI induction might coexist in nature. We find that nuclear localization signals (NLS) and Type IV secretion system signals (T4SS) are of low complexity and evolve fast, whereas binding interactions have intermediate complexity, and enzymatic activity is the most complex. Our model predicts that as ancestral TA systems evolve into eukaryotic CI systems, the placement of NLS or T4SS signals can stochastically vary, imparting effects that might impact CI induction mechanics. Our model highlights how preconditions and sequence length can bias evolution of toward one mechanism or another.
进化算法(EAs)模拟达尔文进化,巧妙地模仿自然进化。生物学中大多数进化算法应用都在自上而下的种群生态学模型中编码了高度抽象的内容。相比之下,我们的研究将生物信息学中的蛋白质比对算法融入基于密码子的进化算法中,这些算法从下至上模拟分子蛋白质序列的进化。我们应用我们的进化算法来解决诱导细胞质不亲和(CI)领域的一个问题。Wolbachia是一种生活在昆虫细胞内的微生物内共生体。CI是一种作为毒素解毒剂(TA)系统起作用的条件性昆虫不育现象。尽管如此,CI表现出的复杂表型在单一离散模型下并未得到充分解释。我们在计算机中实例化控制CI的基因,即CI因子(Cif),将其作为进化算法染色体中的序列。我们通过对其一级氨基酸序列施加选择压力来监测它们的酶活性、结合和细胞定位的进化。我们的模型有助于解释为什么CI诱导的两种不同机制可能在自然界中共存。我们发现核定位信号(NLS)和IV型分泌系统信号(T4SS)的复杂性较低且进化迅速,而结合相互作用具有中等复杂性,酶活性最为复杂。我们的模型预测,随着祖先TA系统进化为真核CI系统,NLS或T4SS信号的位置可能会随机变化,从而产生可能影响CI诱导机制的效应。我们的模型突出了前提条件和序列长度如何使Wolbachia的进化偏向一种或另一种机制。