Auburn University, Department of Entomology and Plant Pathology, 301 Funchess Hall, Auburn, AL 36849, USA; Equal contribution.
Institut des Sciences de l'Evolution de Montpellier (ISEM), University of Montpellier, Centre National de la Recherche Scientifique (CNRS), Ecole Pratique des Hautes Etudes (EPHE), Institut de Recherche pour le Développement (IRD), Montpellier, France; Equal contribution.
Trends Genet. 2019 Mar;35(3):175-185. doi: 10.1016/j.tig.2018.12.004. Epub 2019 Jan 23.
Wolbachia bacteria inhabit the cells of about half of all arthropod species, an unparalleled success stemming in large part from selfish invasive strategies. Cytoplasmic incompatibility (CI), whereby the symbiont makes itself essential to embryo viability, is the most common of these and constitutes a promising weapon against vector-borne diseases. After decades of theoretical and experimental struggle, major recent advances have been made toward a molecular understanding of this phenomenon. As pieces of the puzzle come together, from yeast and Drosophila fly transgenesis to CI diversity patterns in natural mosquito populations, it becomes clearer than ever that the CI induction and rescue stem from a toxin-antidote (TA) system. Further, the tight association of the CI genes with prophages provides clues to the possible evolutionary origin of this phenomenon and the levels of selection at play.
沃尔巴克氏体细菌栖息在大约一半的节肢动物物种的细胞中,这种无与伦比的成功在很大程度上源于自私的入侵策略。细胞质不亲和性(CI)是其中最常见的一种,共生体会使其对胚胎存活至关重要,这是对抗媒介传播疾病的一种有前途的武器。经过几十年的理论和实验斗争,人们对这一现象的分子理解取得了重大进展。随着拼图的不断拼凑,从酵母和果蝇转基因到自然蚊种群中 CI 多样性模式,人们越来越清楚地认识到,CI 的诱导和挽救源于毒素-解毒剂(TA)系统。此外,CI 基因与前噬菌体的紧密联系为这一现象的可能进化起源以及起作用的选择水平提供了线索。