Suppr超能文献

转座酶表达、元件丰度、元件大小和DNA修复决定了转座元件的移动性和遗传性。

Transposase expression, element abundance, element size, and DNA repair determine the mobility and heritability of // transposable elements.

作者信息

Redd Priscilla S, Payero Lisette, Gilbert David M, Page Clinton A, King Reese, McAssey Edward V, Bodie Dalton, Diaz Stephanie, Hancock C Nathan

机构信息

Department of Biology and Geology, University of South Carolina Aiken, Aiken, SC, United States.

Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, United States.

出版信息

Front Cell Dev Biol. 2023 Jun 9;11:1184046. doi: 10.3389/fcell.2023.1184046. eCollection 2023.

Abstract

Class II DNA transposable elements account for significant portions of eukaryotic genomes and contribute to genome evolution through their mobilization. To escape inactivating mutations and persist in the host genome over evolutionary time, these elements must be mobilized enough to result in additional copies. These elements utilize a "cut and paste" transposition mechanism that does not intrinsically include replication. However, elements such as the rice derived element have been observed to increase in copy number over time. We used yeast transposition assays to test several parameters that could affect the excision and insertion of and its related elements. This included development of novel strategies for measuring element insertion and sequencing insertion sites. Increased transposase protein expression increased the mobilization frequency of a small (430 bp) element, while overexpression inhibition was observed for a larger (7,126 bp) element. Smaller element size increased both the frequency of excision and insertion of these elements. The effect of yeast ploidy on element excision, insertion, and copy number provided evidence that homology dependent repair allows for replicative transposition. These elements were found to preferentially insert into yeast rDNA repeat sequences. Identifying the parameters that influence transposition of these elements will facilitate their use for gene discovery and genome editing. These insights in to the behavior of these elements also provide important clues into how class II transposable elements have shaped eukaryotic genomes.

摘要

II类DNA转座元件在真核生物基因组中占相当大的比例,并通过其移动促进基因组进化。为了逃避失活突变并在进化过程中在宿主基因组中持续存在,这些元件必须被充分移动以产生额外的拷贝。这些元件利用一种“剪切粘贴”转座机制,该机制本质上不包括复制。然而,已观察到诸如源自水稻的元件随着时间的推移拷贝数会增加。我们使用酵母转座试验来测试几个可能影响该元件及其相关元件切除和插入的参数。这包括开发用于测量元件插入和对插入位点进行测序的新策略。转座酶蛋白表达的增加提高了一个小的(430 bp)元件的移动频率,而对于一个较大的(7126 bp)元件则观察到过表达抑制。较小的元件大小增加了这些元件的切除和插入频率。酵母倍性对元件切除、插入和拷贝数的影响提供了证据,表明同源依赖性修复允许复制性转座。这些元件被发现优先插入酵母rDNA重复序列中。确定影响这些元件转座的参数将有助于它们用于基因发现和基因组编辑。对这些元件行为的这些见解也为II类转座元件如何塑造真核生物基因组提供了重要线索。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5033/10288884/485f72f930fe/fcell-11-1184046-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验