Aloisio Ludovico, Moschetta Matteo, Boschi Alex, Fleitas Ariel García, Zangoli Mattia, Venturino Ilaria, Vurro Vito, Magni Arianna, Mazzaro Raffaello, Morandi Vittorio, Candini Andrea, D'Andrea Cosimo, Paternò Giuseppe Maria, Gazzano Massimo, Lanzani Guglielmo, Di Maria Francesca
Dipartimento di Fisica, Politecnico di Milano, Piazza L. da Vinci 32, Milano, 20133, Italy.
Center for Nano Science and Technology, Istituto Italiano di Tecnologia, Via Rubattino 81, Milano, 20134, Italy.
Adv Mater. 2023 Oct;35(42):e2302756. doi: 10.1002/adma.202302756. Epub 2023 Aug 17.
The assembly of supramolecular structures within living systems is an innovative approach for introducing artificial constructs and developing biomaterials capable of influencing and/or regulating the biological responses of living organisms. By integrating chemical, photophysical, morphological, and structural characterizations, it is shown that the cell-driven assembly of 2,6-diphenyl-3,5-dimethyl-dithieno[3,2-b:2',3'-d]thiophene-4,4-dioxide (DTTO) molecules into fibers results in the formation of a "biologically assisted" polymorphic form, hence the term bio-polymorph. Indeed, X-ray diffraction reveals that cell-grown DTTO fibers present a unique molecular packing leading to specific morphological, optical, and electrical properties. Monitoring the process of fiber formation in cells with time-resolved photoluminescence, it is established that cellular machinery is necessary for fiber production and a non-classical nucleation mechanism for their growth is postulated. These biomaterials may have disruptive applications in the stimulation and sense of living cells, but more crucially, the study of their genesis and properties broadens the understanding of life beyond the native components of cells.
在生命系统中组装超分子结构是一种引入人工构建体并开发能够影响和/或调节生物体生物反应的生物材料的创新方法。通过整合化学、光物理、形态学和结构表征,结果表明,细胞驱动的2,6-二苯基-3,5-二甲基-二噻吩并[3,2-b:2',3'-d]噻吩-4,4-二氧化物(DTTO)分子组装成纤维会形成一种“生物辅助”多晶型形式,即生物多晶型。事实上,X射线衍射表明,细胞生长的DTTO纤维呈现出独特的分子堆积,从而导致特定的形态、光学和电学性质。通过时间分辨光致发光监测细胞中纤维形成的过程,确定细胞机制对于纤维产生是必要的,并假设了其生长的非经典成核机制。这些生物材料可能在活细胞的刺激和传感方面有突破性应用,但更关键的是,对其起源和性质的研究拓宽了对细胞原生成分之外生命的理解。