Suppr超能文献

基于 1D U-Net 的 PET 探测器晶间散射事件恢复的仿真研究。

A simulation study of 1D U-Net-based inter-crystal scatter event recovery of PET detectors.

机构信息

School of Electronic and Optical Engineering, Nanjing University of Science & Technology, Nanjing, People's Republic of China.

School of Computer Science and Engineering, Nanjing University of Science & Technology, Nanjing, People's Republic of China.

出版信息

Phys Med Biol. 2023 Jul 10;68(14). doi: 10.1088/1361-6560/ace1d1.

Abstract

To achieve high spatial resolution of reconstructed images in positron emission tomography (PET), the size of the scintillation crystal element is set small in current PET systems, which greatly increases the inter-crystal scattering (ICS) frequency. The ICS is a type of Compton scattering of the gamma photons from one crystal element to its neighborhood element, which obscures the determination of the first interaction position. In this study, we propose a 1D U-Net convolutional neural network to predict the first interaction position, which provides a universal way to efficiently solve the ICS recovery problem. The network is trained using the dataset collected from the GATE Monte Carlo simulation. The 1D U-Net structure is applied due to its capability of synthesizing both low-level and high-level information, which shows superiority in solving the ICS recovery problem. After being well trained, the 1D U-Net can generate a prediction accuracy of 78.1%. Compared to the coincidence events only composed from two photoelectric gamma photons, the sensitivity is improved by 149%. The contrast-to-noise ratio of the reconstructed contrast phantom increases from 6.973 to 10.795 for the 16 mm hot sphere. Compared to the take-energy-centroid method, the spatial resolution of the reconstructed resolution phantom can obtain the best improvement of 33.46%. Compared with the previous deep learning method based on the fully connected network, the proposed 1D U-Net can work more stably with considerably fewer network parameters. The 1D U-Net network model shows good universality when predicting different phantoms, and the computation speed is fast.

摘要

为了在正电子发射断层扫描(PET)中实现高空间分辨率的重建图像,当前的 PET 系统将闪烁晶体元件的尺寸设置得很小,这大大增加了晶体间散射(ICS)的频率。ICS 是一种从一个晶体元件到其邻近元件的伽马光子的康普顿散射,它模糊了第一个相互作用位置的确定。在这项研究中,我们提出了一种一维 U-Net 卷积神经网络来预测第一个相互作用位置,这为有效地解决 ICS 恢复问题提供了一种通用方法。该网络使用从 GATE 蒙特卡罗模拟收集的数据进行训练。由于 1D U-Net 结构能够综合低水平和高水平的信息,因此适用于解决 ICS 恢复问题。经过良好的训练,1D U-Net 可以生成 78.1%的预测精度。与仅由两个光电伽马光子组成的符合事件相比,灵敏度提高了 149%。重建对比体模的对比度噪声比从 6.973 增加到 10.795,用于 16mm 热球。与取能质心法相比,重建分辨率体模的空间分辨率可以获得最佳的 33.46%的改善。与以前基于全连接网络的深度学习方法相比,所提出的 1D U-Net 可以用更少的网络参数更稳定地工作。1D U-Net 网络模型在预测不同体模时具有良好的通用性,并且计算速度很快。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验