Central Research Laboratory, Hamamatsu Photonics K. K., 5000 Hirakuchi, Hamana-ku, Hamamatsu 434-8601, Japan.
Phys Med Biol. 2024 May 8;69(10). doi: 10.1088/1361-6560/ad40f6.
This study aims to introduce a novel back projection-induced U-Net-shaped architecture, called ReconU-Net, based on the original U-Net architecture for deep learning-based direct positron emission tomography (PET) image reconstruction. Additionally, our objective is to visualize the behavior of direct PET image reconstruction by comparing the proposed ReconU-Net architecture with the original U-Net architecture and existing DeepPET encoder-decoder architecture without skip connections.. The proposed ReconU-Net architecture uniquely integrates the physical model of the back projection operation into the skip connection. This distinctive feature facilitates the effective transfer of intrinsic spatial information from the input sinogram to the reconstructed image via an embedded physical model. The proposed ReconU-Net was trained using Monte Carlo simulation data from the Brainweb phantom and tested on both simulated and real Hoffman brain phantom data.. The proposed ReconU-Net method provided better reconstructed image in terms of the peak signal-to-noise ratio and contrast recovery coefficient than the original U-Net and DeepPET methods. Further analysis shows that the proposed ReconU-Net architecture has the ability to transfer features of multiple resolutions, especially non-abstract high-resolution information, through skip connections. Unlike the U-Net and DeepPET methods, the proposed ReconU-Net successfully reconstructed the real Hoffman brain phantom, despite limited training on simulated data.. The proposed ReconU-Net can improve the fidelity of direct PET image reconstruction, even with small training datasets, by leveraging the synergistic relationship between data-driven modeling and the physics model of the imaging process.
本研究旨在介绍一种新颖的基于反向投影的 U-Net 结构,称为 ReconU-Net,它是基于原始的 U-Net 架构,用于基于深度学习的正电子发射断层扫描(PET)图像重建。此外,我们的目标是通过比较提出的 ReconU-Net 架构与原始的 U-Net 架构和没有跳过连接的现有 DeepPET 编解码器架构,来可视化直接 PET 图像重建的行为。所提出的 ReconU-Net 架构独特地将反向投影操作的物理模型集成到跳过连接中。这个独特的特征通过嵌入式物理模型,促进了从输入正弦图到重建图像的固有空间信息的有效传递。所提出的 ReconU-Net 使用来自 Brainweb 体模的蒙特卡罗模拟数据进行训练,并在模拟和真实 Hoffman 脑体模数据上进行测试。与原始的 U-Net 和 DeepPET 方法相比,所提出的 ReconU-Net 方法在峰值信噪比和对比恢复系数方面提供了更好的重建图像。进一步的分析表明,所提出的 ReconU-Net 架构具有通过跳过连接传递多个分辨率的特征的能力,特别是非抽象的高分辨率信息。与 U-Net 和 DeepPET 方法不同,所提出的 ReconU-Net 成功地重建了真实的 Hoffman 脑体模,尽管在模拟数据上的训练有限。所提出的 ReconU-Net 可以通过利用数据驱动建模和成像过程物理模型之间的协同关系,提高直接 PET 图像重建的保真度,即使在训练数据集较小的情况下也是如此。