School of Automation, Guangdong University of Technology, Guangzhou 510006, People's Republic of China.
School of Computer Science and Technology, Guangdong University of Technology, Guangzhou 510006, People's Republic of China.
Phys Med Biol. 2023 Jul 12;68(14). doi: 10.1088/1361-6560/ace1cf.
. Due to the blurry edges and uneven shape of breast tumors, breast tumor segmentation can be a challenging task. Recently, deep convolution networks based approaches achieve satisfying segmentation results. However, the learned shape information of breast tumors might be lost owing to the successive convolution and down-sampling operations, resulting in limited performance.. To this end, we propose a novel shape-guided segmentation (SGS) framework that guides the segmentation networks to be shape-sensitive to breast tumors by prior shape information. Different from usual segmentation networks, we guide the networks to model shape-shared representation with the assumption that shape information of breast tumors can be shared among samples. Specifically, on the one hand, we propose a shape guiding block (SGB) to provide shape guidance through a superpixel pooling-unpooling operation and attention mechanism. On the other hand, we further introduce a shared classification layer (SCL) to avoid feature inconsistency and additional computational costs. As a result, the proposed SGB and SCL can be effortlessly incorporated into mainstream segmentation networks (e.g. UNet) to compose the SGS, facilitating compact shape-friendly representation learning.. Experiments conducted on a private dataset and a public dataset demonstrate the effectiveness of the SGS compared to other advanced methods.. We propose a united framework to encourage existing segmentation networks to improve breast tumor segmentation by prior shape information. The source code will be made available athttps://github.com/TxLin7/Shape-Seg.
由于乳腺肿瘤边缘模糊和形状不均匀,乳腺肿瘤分割是一项具有挑战性的任务。最近,基于深度卷积网络的方法取得了令人满意的分割结果。然而,由于连续的卷积和下采样操作,所学习到的乳腺肿瘤形状信息可能会丢失,导致性能有限。为此,我们提出了一种新的形状引导分割(SGS)框架,通过先验形状信息引导分割网络对乳腺肿瘤具有形状敏感性。与通常的分割网络不同,我们引导网络通过假设乳腺肿瘤的形状信息可以在样本之间共享,来对形状共享表示进行建模。具体来说,一方面,我们提出了一个形状引导块(SGB),通过超像素池化-上采样操作和注意力机制提供形状引导。另一方面,我们进一步引入了一个共享分类层(SCL),以避免特征不一致和额外的计算成本。因此,所提出的 SGB 和 SCL 可以轻松地整合到主流分割网络(如 UNet)中,构成 SGS,从而促进紧凑的形状友好的表示学习。在一个私有数据集和一个公共数据集上进行的实验表明,与其他先进方法相比,SGS 具有有效性。我们提出了一个统一的框架,通过先验形状信息鼓励现有的分割网络来提高乳腺肿瘤分割的性能。代码将在 https://github.com/TxLin7/Shape-Seg 上提供。