Li Jun, Xia Wenlong, Lu Jinyu, Liu Jin, Qiu Lihua, Shi Zhijie, Song Yeye, Li Yuling, Zhang Dawei, Yang Haima, Fu Le
School of Optical Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, China.
School of Electronic and Electrical Engineering, Shanghai University of Engineering Science, Shanghai, China.
Med Phys. 2025 Aug;52(8):e18041. doi: 10.1002/mp.18041.
BACKGROUND: Vaginal intraepithelial neoplasia (VAIN) is a rare precancerous lesion, and early diagnosis is crucial for preventing its progression to invasive vaginal cancer. However, the subtle differences in morphology and color between VAIN lesions and normal vaginal tissue make the automatic segmentation of VAIN highly challenging. Existing methods struggle to achieve precise segmentation, impacting the efficiency of early screening. PURPOSE: This study aims to develop a high-accuracy, robust deep learning image segmentation network to accurately and automatically segment VAIN lesions, thereby improving the efficiency and accuracy of early VAIN screening. METHODS: We propose a multi-scale dilated attention flow network for VAIN image segmentation. This network improves upon the U-Net architecture by optimizing the designs of the encoder and decoder and incorporating skip connection modules. In the encoding stage, we introduce the dilated squeeze-and-excitation (DiSE) module and the flow field guided adaptive separation and enhancement (FGASE) module. The DiSE module integrates dilated convolutions with varying dilation rates and a channel attention mechanism, effectively extracting multi-scale contextual information and enhancing the model's ability to perceive VAIN lesions of different sizes. The FGASE module employs flow-guided techniques to dynamically separate the features of the main region (VAIN lesions) from the edge region and enhance them individually. In the decoding stage, we propose a depth wise enhanced pooling (DEP) module that combines deep convolutional layers with adaptive pooling strategies to improve local feature extraction capabilities and optimize global contextual information. The skip connection stage introduces a triple statistical attention (TSA) module that utilizes global average pooling, global max pooling, and global standard deviation pooling to effectively capture diverse feature information, thereby enhancing the model's ability to model long-range dependencies. RESULTS: Experiments conducted on a VAIN image dataset comprising 1142 patients demonstrate that the proposed network significantly outperforms other medical image segmentation methods across six metrics: Mean intersection over union (MIoU), dice coefficient, accuracy, recall, precision, and mean absolute error (MAE). Specifically, this network achieved an MIoU of 0.8461 and a Dice coefficient of 0.9166, substantially higher than other comparative methods, with a faster convergence speed. Ablation studies further confirm the effectiveness of each module in enhancing the model's performance. CONCLUSIONS: The proposed network exhibits exceptional performance and robustness in the task of VAIN image segmentation, effectively segmenting VAIN lesions and providing strong technical support for early VAIN screening and clinical diagnosis. This work has significant clinical application value.
背景:阴道上皮内瘤变(VAIN)是一种罕见的癌前病变,早期诊断对于预防其进展为浸润性阴道癌至关重要。然而,VAIN病变与正常阴道组织在形态和颜色上的细微差异使得VAIN的自动分割极具挑战性。现有方法难以实现精确分割,影响了早期筛查的效率。 目的:本研究旨在开发一种高精度、鲁棒的深度学习图像分割网络,以准确、自动地分割VAIN病变,从而提高VAIN早期筛查的效率和准确性。 方法:我们提出了一种用于VAIN图像分割的多尺度扩张注意力流网络。该网络通过优化编码器和解码器的设计并结合跳跃连接模块对U-Net架构进行了改进。在编码阶段,我们引入了扩张挤压与激励(DiSE)模块和流场引导的自适应分离与增强(FGASE)模块。DiSE模块将具有不同扩张率的扩张卷积与通道注意力机制相结合,有效地提取多尺度上下文信息并增强模型感知不同大小VAIN病变的能力。FGASE模块采用流引导技术动态地将主要区域(VAIN病变)的特征与边缘区域的特征分离并分别增强。在解码阶段,我们提出了一种深度增强池化(DEP)模块,该模块将深度卷积层与自适应池化策略相结合,以提高局部特征提取能力并优化全局上下文信息。跳跃连接阶段引入了三重统计注意力(TSA)模块,该模块利用全局平均池化、全局最大池化和全局标准差池化来有效捕获多样的特征信息,从而增强模型对长程依赖关系进行建模的能力。 结果:在包含1142例患者的VAIN图像数据集上进行的实验表明,所提出的网络在平均交并比(MIoU)、骰子系数、准确率、召回率、精确率和平均绝对误差(MAE)这六个指标上显著优于其他医学图像分割方法。具体而言,该网络实现了0.8461的MIoU和0.9166的骰子系数,大大高于其他比较方法,且收敛速度更快。消融研究进一步证实了每个模块在增强模型性能方面的有效性。 结论:所提出的网络在VAIN图像分割任务中表现出卓越的性能和鲁棒性,有效地分割了VAIN病变,为VAIN早期筛查和临床诊断提供了有力的技术支持。这项工作具有重要的临床应用价值。
BMC Med Imaging. 2025-8-13
Biomed Phys Eng Express. 2025-8-21