Department of Pharmacy, University of Genoa, Viale Benedetto XV 3, 16132, Genova, Italy.
IRCCS Ospedale Policlinico San Martino Unit Proteomics and Mass Spectrometry, L.go. R. Benzi, 10, 16132, Genova, Italy.
ChemMedChem. 2023 Sep 1;18(17):e202300252. doi: 10.1002/cmdc.202300252. Epub 2023 Jul 12.
In previous studies, we synthesized different imidazo-pyrazoles 1 and 2 with interesting anticancer, anti-angiogenic and anti-inflammatory activities. To further extend the structure-activity relationships of imidazo-pyrazole scaffold and to identify novel antiproliferative/anti-inflammatory agents potentially active with multi-target mechanisms, a library of compounds 3-5 has been designed and synthesized. The chemical modifications characterizing the novel derivatives include: i) decoration of the catechol ring with groups with different electronic, steric and lipophilic properties (compounds 3); ii) insertion of a methyl group on C-6 of imidazo-pyrazole scaffold (compounds 4); iii) shift of the acylhydrazonic substituent from position 7 to 6 of the imidazo-pyrazole substructure (compounds 5). All synthesized compounds were tested against a panel of cancer and normal cell lines. Derivatives 3 a, 3 e, 4 c, 5 g and 5 h showed IC values in the low micromolar range against selected tumor cell lines and proved to have antioxidant properties, being able to inhibit ROS production in human platelet. In silico calculation predicted favourable drug-like and pharmacokinetic properties for the most promising compounds. Furthermore, molecular docking and molecular dynamic simulations suggested the ability of most active derivative 3 e to interact with colchicine binding site in the polymeric tubulin α/tubulin β/stathmin4 complex.
在之前的研究中,我们合成了具有有趣的抗癌、抗血管生成和抗炎活性的不同咪唑并吡唑 1 和 2。为了进一步扩展咪唑并吡唑骨架的构效关系,并发现具有多靶点机制的新型增殖/抗炎试剂,我们设计并合成了化合物 3-5 的库。新衍生物的化学修饰特征包括:i)用具有不同电子、立体和亲脂性的基团修饰儿茶酚环(化合物 3);ii)在咪唑并吡唑骨架的 C-6 上插入一个甲基(化合物 4);iii)将酰腙取代基从咪唑并吡唑亚结构的 7 位转移到 6 位(化合物 5)。所有合成的化合物都针对一组癌症和正常细胞系进行了测试。衍生物 3a、3e、4c、5g 和 5h 在低微摩尔范围内对选定的肿瘤细胞系表现出 IC 值,并具有抗氧化特性,能够抑制人血小板中 ROS 的产生。基于计算的预测表明,最有前途的化合物具有良好的类药性和药代动力学特性。此外,分子对接和分子动力学模拟表明,最活跃的衍生物 3e 能够与微管蛋白 α/微管蛋白 β/stathmin4 复合物中的秋水仙碱结合位点相互作用。