Suppr超能文献

自发性脑出血后急性肾损伤的预测模型:一项多中心回顾性研究。

Predictive model of acute kidney injury after spontaneous intracerebral hemorrhage: A multicenter retrospective study.

机构信息

Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China.

Center for Evidence-based Medicine, Affiliated Hospital of Chengdu University, Chengdu, Sichuan, China.

出版信息

Eur Stroke J. 2023 Sep;8(3):747-755. doi: 10.1177/23969873231184667. Epub 2023 Jun 27.

Abstract

BACKGROUND AND OBJECTIVES

Acute kidney injury is a common comorbidity in patients with intracerebral hemorrhage. Although there are predictive models to determine risk of AKI in patients in critical care or post-surgical scenarios or in general medical floors, there are no models that specifically determine the risk of AKI in patients with ICH.

METHODS

Clinical features and laboratory tests were selected by previous studies and LASSO (least absolute shrinkage and selection operator) regression. We used multivariable logistic regression with a bidirectional stepwise method to construct ICH-AKIM (intracerebral hemorrhage-associated acute kidney injury model). The accuracy of ICH-AKIM was measured by the area under the receiver operating characteristic curve. The outcome was AKI development during hospitalization, defined as KDIGO (Kidney Disease: Improving Global Outcomes) Guidelines.

RESULTS

From four independent medical centers, a total of 9649 patients with ICH were available. Overall, five clinical features (sex, systolic blood pressure, diabetes, Glasgow coma scale, mannitol infusion) and four laboratory tests at admission (serum creatinine, albumin, uric acid, neutrophils-to-lymphocyte ratio) were predictive factors and were included in the ICH-AKIM construction. The AUC of ICH-AKIM in the derivation, internal validation, and three external validation cohorts were 0.815, 0.816, 0.776, 0.780, and 0.821, respectively. Compared to the univariate forecast and pre-existing AKI models, ICH-AKIM led to significant improvements in discrimination and reclassification for predicting the incidence of AKI in all cohorts. An online interface of ICH-AKIM is freely available for use.

CONCLUSION

ICH-AKIM exhibited good discriminative capabilities for the prediction of AKI after ICH and outperforms existing predictive models.

摘要

背景与目的

急性肾损伤是脑出血患者常见的合并症。虽然有预测模型可以确定重症监护或手术后或一般内科病房患者发生 AKI 的风险,但没有专门用于确定脑出血患者发生 AKI 风险的模型。

方法

通过既往研究和 LASSO(最小绝对收缩和选择算子)回归选择临床特征和实验室检查。我们使用具有双向逐步法的多变量逻辑回归构建 ICH-AKIM(脑出血相关急性肾损伤模型)。通过接受者操作特征曲线下面积来衡量 ICH-AKIM 的准确性。结果是住院期间发生 AKI,定义为 KDIGO(肾脏疾病:改善全球结局)指南。

结果

来自四个独立的医疗中心,共有 9649 名脑出血患者可用。总体而言,五个临床特征(性别、收缩压、糖尿病、格拉斯哥昏迷量表、甘露醇输注)和入院时的四项实验室检查(血清肌酐、白蛋白、尿酸、中性粒细胞与淋巴细胞比值)是预测因素,并纳入了 ICH-AKIM 的构建。ICH-AKIM 在推导、内部验证和三个外部验证队列中的 AUC 分别为 0.815、0.816、0.776、0.780 和 0.821。与单变量预测和现有的 AKI 模型相比,ICH-AKIM 在所有队列中预测 AKI 发生率方面均显著提高了区分度和再分类能力。ICH-AKIM 的在线界面可供免费使用。

结论

ICH-AKIM 对脑出血后 AKI 的预测具有良好的区分能力,优于现有的预测模型。

相似文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验