Suppr超能文献

慢性血液透析患者心脑血管事件的时间依赖性预测模型:一项前瞻性研究的见解

A time-dependent predictive model for cardiocerebral vascular events in chronic hemodialysis patients: insights from a prospective study.

作者信息

Zhong Haowen, Zhang Mengbi, Xie Yingye, Qin Yuqin, Xie Na, Ye Yuqiu, Li Heng, Peng Hongquan, Liu Xun, Su Xiaoyan, Li Shaohong

机构信息

Department of Nephrology, Dongguan Tungwah Hospital, Dongguan, China.

Dongguan Key Laboratory of Precise Prevention & Treatment of Chronic Kidney Disease and Complications, Dongguan, China.

出版信息

Front Med (Lausanne). 2025 Jun 4;12:1481866. doi: 10.3389/fmed.2025.1481866. eCollection 2025.

Abstract

CONTEXT

The conventional risk factors for cardiocerebral vascular events (CVCs) in non-Hemodialysis (HD) patients cannot be directly applied to HD patients due to the unique characteristics of this population. More accurate information on the risk of progression to CVCs is needed for clinical decisions.

OBJECTIVE

To develop and validate time-dependent predictive models for the progression of CVCs in HD patients.

DESIGN SETTING AND PARTICIPANTS

Development and validation of time-dependent predictive models using demographic, clinical, and laboratory data from 3 dialysis centers between 2017 and 2021. These models were developed using time-dependent Cox proportional hazards regression and assessed for discrimination using the concordance index, goodness of fit using the Akaike information criterion and net reclassification improvement.

MAIN OUTCOME MEASURES

CVCs included acute heart failure, acute hematencephalon, cardiac or brain-derived death, acute myocardial infarction, acute cerebral infarction, ischemic cardiomyopathy, unstable angina pectoris, and stable angina pectoris.

RESULTS

The development and validation cohorts included 233 and 215 patients, respectively. The most accurate model included age, sex, hemoglobin, serum albumin, serum phosphate, white blood cell count, blood flow rate and ultrafiltration volume during HD (C index, 0.704; 95% CI, 0.639-0.768 in the development cohort and 0.775; 95% CI, 0.706-0.843 in the validation cohort). In the validation cohort, this model was more accurate than a model containing variables whose value in the Cox proportional hazards regression was less than 0.05 (NRI: 0.351, 95% CI: -0.115-0.565).

CONCLUSION

A time-dependent model using routinely obtained laboratory tests can accurately predict progression to CVCs in HD patients.

摘要

背景

由于非血液透析(HD)患者具有独特的特征,传统的心脑血管事件(CVC)风险因素不能直接应用于HD患者。临床决策需要更准确的CVC进展风险信息。

目的

建立并验证HD患者CVC进展的时间依赖性预测模型。

设计、设置和参与者:使用2017年至2021年期间3个透析中心的人口统计学、临床和实验室数据,开发并验证时间依赖性预测模型。这些模型采用时间依赖性Cox比例风险回归进行开发,并使用一致性指数评估区分度,使用赤池信息准则评估拟合优度和净重新分类改善情况。

主要结局指标

CVC包括急性心力衰竭、急性脑出血、心源性或脑源性死亡、急性心肌梗死、急性脑梗死、缺血性心肌病、不稳定型心绞痛和稳定型心绞痛。

结果

开发队列和验证队列分别包括233例和215例患者。最准确的模型包括年龄、性别、血红蛋白、血清白蛋白、血清磷酸盐、白细胞计数、HD期间的血流量和超滤量(C指数,开发队列中为0.704;95%可信区间,0.639 - 0.768;验证队列中为0.775;95%可信区间,0.706 - 0.843)。在验证队列中,该模型比包含Cox比例风险回归中值小于0.05的变量的模型更准确(净重新分类改善:0.351,95%可信区间:-0.115 - 0.565)。

结论

使用常规获得的实验室检查的时间依赖性模型可以准确预测HD患者CVC的进展。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9768/12174140/24e5ab1248c2/fmed-12-1481866-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验