Suppr超能文献

一种使用传递函数噪声模型对岩溶泉流量进行建模的数据驱动方法。

A data-driven approach for modelling Karst spring discharge using transfer function noise models.

作者信息

Rudolph Max Gustav, Collenteur Raoul Alexander, Kavousi Alireza, Giese Markus, Wöhling Thomas, Birk Steffen, Hartmann Andreas, Reimann Thomas

机构信息

Institute of Groundwater Management, Technische Universität Dresden, Dresden, Germany.

Department Water Resources and Drinking Water, Eawag, Dübendorf, Switzerland.

出版信息

Environ Earth Sci. 2023;82(13):339. doi: 10.1007/s12665-023-11012-z. Epub 2023 Jun 24.

Abstract

Karst aquifers are important sources of fresh water on a global scale. The hydrological modelling of karst spring discharge, however, still poses a challenge. In this study we apply a transfer function noise (TFN) model in combination with a bucket-type recharge model to simulate karst spring discharge. The application of the noise model for the residual series has the advantage that it is more consistent with assumptions for optimization such as homoscedasticity and independence. In an earlier hydrological modeling study, named Karst Modeling Challenge (KMC; Jeannin et al., J Hydrol 600:126-508, 2021), several modelling approaches were compared for the Milandre Karst System in Switzerland. This serves as a benchmark and we apply the TFN model to KMC data, subsequently comparing the results to other models. Using different data-model-combinations, the most promising data-model-combination is identified in a three-step least-squares calibration. To quantify uncertainty, the Bayesian approach of Markov-chain Monte Carlo (MCMC) sampling is subsequently used with uniform priors for the previously identified best data-model combination. The MCMC maximum likelihood solution is used to simulate spring discharge for a previously unseen testing period, indicating a superior performance compared to all other models in the KMC. It is found that the model gives a physically feasible representation of the system, which is supported by field measurements. While the TFN model simulated rising limbs and flood recession especially well, medium and baseflow conditions were not represented as accurately. The TFN approach poses a well-performing data-driven alternative to other approaches that should be considered in future studies.

摘要

岩溶泉含水层在全球范围内是重要的淡水源。然而,岩溶泉流量的水文模拟仍然是一项挑战。在本研究中,我们应用传递函数噪声(TFN)模型并结合桶式补给模型来模拟岩溶泉流量。将噪声模型应用于残差序列的优点在于,它更符合诸如同方差性和独立性等优化假设。在一项名为“岩溶建模挑战”(KMC;Jeannin等人,《水文杂志》600:126 - 508,2021)的早期水文建模研究中,对瑞士米朗德岩溶系统的几种建模方法进行了比较。这作为一个基准,我们将TFN模型应用于KMC数据,随后将结果与其他模型进行比较。使用不同的数据 - 模型组合,在三步最小二乘校准中确定最有前景的数据 - 模型组合。为了量化不确定性,随后使用马尔可夫链蒙特卡罗(MCMC)采样的贝叶斯方法,对先前确定的最佳数据 - 模型组合采用均匀先验。MCMC最大似然解用于模拟一个先前未见过的测试期的泉水流量,表明其性能优于KMC中的所有其他模型。研究发现,该模型对系统给出了物理上可行的表示,这得到了现场测量的支持。虽然TFN模型对上升支和洪水消退的模拟特别好,但对中流量和基流条件的表示不够准确。TFN方法为未来研究中应考虑的其他方法提供了一种性能良好的数据驱动替代方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4026/10290613/494c43882cea/12665_2023_11012_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验