Wöhling Thomas, Delgadillo Alvaro Oliver Crespo, Kraft Moritz, Guthke Anneli
Chair of Hydrology, Dresden University of Technology (TUD), 01069, Dresden, Germany.
University of Stuttgart, Stuttgart Center for Simulation Science (SC SimTech), 70569, Stuttgart, Germany.
Ground Water. 2025 Jul-Aug;63(4):484-505. doi: 10.1111/gwat.13487. Epub 2025 Apr 21.
Groundwater level observations are used as decision variables for aquifer management, often in conjunction with models to provide predictions for operational forecasting. In this study, we compare different model classes for this task: a spatially explicit 3D groundwater flow model (MODFLOW), an eigenmodel, a transfer-function model, and three machine learning models, namely, multi-layer perceptron models, long short-term memory models, and random forest models. The models differ widely in their complexity, input requirements, calibration effort, and run-times. They are tested on four groundwater level time series from the Wairau Aquifer in New Zealand to investigate the potential of the data-driven approaches to outperform the MODFLOW model in predicting individual target wells. Further, we wish to reveal whether the MODFLOW model has advantages in predicting all four wells simultaneously because it can use the available information in a physics-based, integrated manner, or whether structural limitations spoil this effect. Our results demonstrate that data-driven models with low input requirements and short run-times are competitive candidates for local groundwater level predictions even for system states that lie outside the calibration data range. There is no "single best" model that performs best in all cases, which motivates ensemble forecasting with different model classes using Bayesian model averaging. The obtained Bayesian model weights clearly favor MODFLOW when targeting all wells simultaneously, even though the competing approaches had the chance to fine-tune for each tested well individually. This is a remarkable result that strengthens the argument for physics-based approaches even for seemingly "simple" groundwater level prediction tasks.
地下水位观测数据常被用作含水层管理的决策变量,通常与模型结合使用,以提供运营预测。在本研究中,我们针对此任务比较了不同的模型类别:一个空间显式的三维地下水流模型(MODFLOW)、一个特征模型、一个传递函数模型以及三种机器学习模型,即多层感知器模型、长短期记忆模型和随机森林模型。这些模型在复杂性、输入要求、校准工作量和运行时间方面差异很大。它们在新西兰怀劳含水层的四个地下水位时间序列上进行了测试,以研究数据驱动方法在预测单个目标井方面优于MODFLOW模型的潜力。此外,我们希望揭示MODFLOW模型在同时预测所有四口井时是否具有优势,因为它可以以基于物理的综合方式使用可用信息,或者结构限制是否会破坏这种效果。我们的结果表明,对于局部地下水位预测,即使对于校准数据范围之外的系统状态,输入要求低且运行时间短的数据驱动模型也是有竞争力的候选模型。不存在在所有情况下都表现最佳的“单一最佳”模型,这促使使用贝叶斯模型平均法对不同模型类别进行集成预测。当同时针对所有井时,所获得的贝叶斯模型权重明显有利于MODFLOW,尽管竞争方法有机会针对每个测试井单独进行微调。这是一个显著的结果,加强了即使对于看似“简单”的地下水位预测任务,基于物理的方法的论据。