Suppr超能文献

比较 regmed 和 BayesNetty 用于探索具有多个变量的因果模型。

Comparison of regmed and BayesNetty for exploring causal models with many variables.

机构信息

Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK.

出版信息

Genet Epidemiol. 2023 Oct;47(7):496-502. doi: 10.1002/gepi.22532. Epub 2023 Jun 27.

Abstract

Here we compare a recently proposed method and software package, regmed, with our own previously developed package, BayesNetty, designed to allow exploratory analysis of complex causal relationships between biological variables. We find that regmed generally has poorer recall but much better precision than BayesNetty. This is perhaps not too surprising as regmed is specifically designed for use with high-dimensional data. BayesNetty is found to be more sensitive to the resulting multiple testing problem encountered in these circumstances. However, as regmed is not designed to handle missing data, its performance is severely affected when missing data is present, whereas the performance of BayesNetty is only slightly affected. The performance of regmed can be rescued in this situation by first using BayesNetty to impute the missing data, and then applying regmed to the resulting "filled-in" data set.

摘要

在这里,我们将最近提出的方法和软件包 regmed 与我们自己先前开发的软件包 BayesNetty 进行比较,BayesNetty 旨在允许对生物变量之间复杂因果关系进行探索性分析。我们发现,regmed 的召回率通常较低,但准确率比 BayesNetty 高得多。这也许并不奇怪,因为 regmed 是专门为高维数据设计的。BayesNetty 发现对这种情况下出现的多重检验问题更敏感。然而,由于 regmed 不是为处理缺失数据而设计的,因此当存在缺失数据时,其性能会受到严重影响,而 BayesNetty 的性能只有轻微影响。在这种情况下,可以先使用 BayesNetty 对缺失数据进行插补,然后将 regmed 应用于生成的“填充”数据集,从而挽救 regmed 的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fe28/10947209/36655a86b104/GEPI-47-496-g006.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验