Suppr超能文献

培养的迷走传入神经元作为肠道效应分子的传感器。

Cultured Vagal Afferent Neurons as Sensors for Intestinal Effector Molecules.

机构信息

Department of Biomedical Engineering, University of California-Davis, Davis, CA 95616, USA.

Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California-Davis, Davis, CA 95616, USA.

出版信息

Biosensors (Basel). 2023 May 31;13(6):601. doi: 10.3390/bios13060601.

Abstract

The gut-brain axis embodies the bi-directional communication between the gastrointestinal tract and the central nervous system (CNS), where vagal afferent neurons (VANs) serve as sensors for a variety of gut-derived signals. The gut is colonized by a large and diverse population of microorganisms that communicate via small (effector) molecules, which also act on the VAN terminals situated in the gut viscera and consequently influence many CNS processes. However, the convoluted in vivo environment makes it difficult to study the causative impact of the effector molecules on VAN activation or desensitization. Here, we report on a VAN culture and its proof-of-principle demonstration as a cell-based sensor to monitor the influence of gastrointestinal effector molecules on neuronal behavior. We initially compared the effect of surface coatings (poly-L-lysine vs. Matrigel) and culture media composition (serum vs. growth factor supplement) on neurite growth as a surrogate of VAN regeneration following tissue harvesting, where the Matrigel coating, but not the media composition, played a significant role in the increased neurite growth. We then used both live-cell calcium imaging and extracellular electrophysiological recordings to show that the VANs responded to classical effector molecules of endogenous and exogenous origin (cholecystokinin serotonin and capsaicin) in a complex fashion. We expect this study to enable platforms for screening various effector molecules and their influence on VAN activity, assessed by their information-rich electrophysiological fingerprints.

摘要

肠脑轴体现了胃肠道和中枢神经系统(CNS)之间的双向通讯,其中迷走传入神经元(VAN)作为各种肠道来源信号的传感器。肠道被大量多样的微生物定植,这些微生物通过小分子(效应分子)进行通讯,这些小分子也作用于位于肠道内脏的 VAN 末梢,从而影响许多中枢神经系统过程。然而,复杂的体内环境使得研究效应分子对 VAN 激活或脱敏的因果影响变得困难。在这里,我们报告了 VAN 培养及其作为基于细胞的传感器的原理验证,用于监测胃肠道效应分子对神经元行为的影响。我们最初比较了表面涂层(多聚赖氨酸与 Matrigel)和培养基组成(血清与生长因子补充)对神经突生长的影响,作为组织收获后 VAN 再生的替代指标,其中 Matrigel 涂层而不是培养基组成在增加的神经突生长中起重要作用。然后,我们使用活细胞钙成像和细胞外电生理记录来显示 VAN 以复杂的方式对内源性和外源性的经典效应分子(胆囊收缩素、血清素和辣椒素)作出反应。我们期望这项研究能够为筛选各种效应分子及其对 VAN 活性的影响提供平台,通过其信息丰富的电生理指纹进行评估。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1972/10295822/ad05a1bf02f8/biosensors-13-00601-g001.jpg

相似文献

1
Cultured Vagal Afferent Neurons as Sensors for Intestinal Effector Molecules.
Biosensors (Basel). 2023 May 31;13(6):601. doi: 10.3390/bios13060601.
2
Microfluidic compartmentalization of rat vagal afferent neurons to model gut-brain axis.
Bioelectron Med. 2024 Feb 21;10(1):3. doi: 10.1186/s42234-023-00140-3.
3
Vagal afferent neurons in high fat diet-induced obesity; intestinal microflora, gut inflammation and cholecystokinin.
Physiol Behav. 2011 Nov 30;105(1):100-5. doi: 10.1016/j.physbeh.2011.02.040. Epub 2011 Mar 2.
4
Role of transient receptor potential channels in cholecystokinin-induced activation of cultured vagal afferent neurons.
Endocrinology. 2010 Nov;151(11):5237-46. doi: 10.1210/en.2010-0504. Epub 2010 Sep 29.
5
Sensory signal transduction in the vagal primary afferent neurons.
Curr Med Chem. 2007;14(24):2554-63. doi: 10.2174/092986707782023334.
7
Cooperative activation of cultured vagal afferent neurons by leptin and cholecystokinin.
Endocrinology. 2004 Aug;145(8):3652-7. doi: 10.1210/en.2004-0221. Epub 2004 Apr 22.
9
Uts2b is a microbiota-regulated gene expressed in vagal afferent neurons connected to enteroendocrine cells producing cholecystokinin.
Biochem Biophys Res Commun. 2022 Jun 11;608:66-72. doi: 10.1016/j.bbrc.2022.03.117. Epub 2022 Mar 31.
10
Gut microbiota composition modulates inflammation and structure of the vagal afferent pathway.
Physiol Behav. 2020 Oct 15;225:113082. doi: 10.1016/j.physbeh.2020.113082. Epub 2020 Jul 16.

引用本文的文献

1
Vagal Sensory Gut-Brain Pathways That Control Eating-Satiety and Beyond.
Compr Physiol. 2025 Apr;15(2):e70010. doi: 10.1002/cph4.70010.
2
Microfluidic tools to model, monitor, and modulate the gut-brain axis.
Biomicrofluidics. 2025 Mar 7;19(2):021301. doi: 10.1063/5.0253041. eCollection 2025 Mar.
3
Microfluidic compartmentalization of rat vagal afferent neurons to model gut-brain axis.
Bioelectron Med. 2024 Feb 21;10(1):3. doi: 10.1186/s42234-023-00140-3.

本文引用的文献

2
The preference for sugar over sweetener depends on a gut sensor cell.
Nat Neurosci. 2022 Feb;25(2):191-200. doi: 10.1038/s41593-021-00982-7. Epub 2022 Jan 13.
3
Microbial metabolites and the vagal afferent pathway in the control of food intake.
Physiol Behav. 2021 Oct 15;240:113555. doi: 10.1016/j.physbeh.2021.113555. Epub 2021 Aug 8.
4
TRPM3 expression and control of glutamate release from primary vagal afferent neurons.
J Neurophysiol. 2021 Jan 1;125(1):199-210. doi: 10.1152/jn.00229.2020. Epub 2020 Dec 9.
5
Gut microbiota-derived metabolites as central regulators in metabolic disorders.
Gut. 2021 Jun;70(6):1174-1182. doi: 10.1136/gutjnl-2020-323071. Epub 2020 Dec 3.
6
9
A comparison of neuronal population dynamics measured with calcium imaging and electrophysiology.
PLoS Comput Biol. 2020 Sep 15;16(9):e1008198. doi: 10.1371/journal.pcbi.1008198. eCollection 2020 Sep.
10
Intact vagal gut-brain signalling prevents hyperphagia and excessive weight gain in response to high-fat high-sugar diet.
Acta Physiol (Oxf). 2021 Mar;231(3):e13530. doi: 10.1111/apha.13530. Epub 2020 Jul 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验