文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

用于热引发 NO 增强光热治疗的近红外二区吸收共轭聚合物纳米诊疗剂。

NIR-II Absorbing Conjugated Polymer Nanotheranostics for Thermal Initiated NO Enhanced Photothermal Therapy.

机构信息

Key Laboratory of Medical Molecular Probes, Department of Medical Chemistry, School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, China.

Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Medicine, Linyi University, Linyi 276005, China.

出版信息

Biosensors (Basel). 2023 Jun 12;13(6):642. doi: 10.3390/bios13060642.


DOI:10.3390/bios13060642
PMID:37367007
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10296163/
Abstract

Photothermal therapy (PTT) has received constant attention as a promising cancer treatment. However, PTT-induced inflammation can limit its effectiveness. To address this shortcoming, we developed second near-infrared (NIR-II) light-activated nanotheranostics (CPNPBs), which include a thermosensitive nitric oxide (NO) donor (BNN6) to enhance PTT. Under a 1064 nm laser irradiation, the conjugated polymer in CPNPBs serves as a photothermal agent for photothermal conversion, and the generated heat triggers the decomposition of BNN6 to release NO. The combination of hyperthermia and NO generation under single NIR-II laser irradiation allows enhanced thermal ablation of tumors. Consequently, CPNPBs can be exploited as potential candidates for NO-enhanced PTT, holding great promise for their clinical translational development.

摘要

光热治疗(PTT)作为一种有前途的癌症治疗方法受到了持续关注。然而,PTT 诱导的炎症会限制其效果。为了解决这一缺点,我们开发了第二代近红外(NIR-II)光激活纳米治疗剂(CPNPBs),其中包括一种热敏性一氧化氮(NO)供体(BNN6)以增强 PTT。在 1064nm 激光照射下,CPNPBs 中的共轭聚合物作为光热转换的光热剂,产生的热量触发 BNN6 的分解以释放 NO。在单一 NIR-II 激光照射下,高热和 NO 生成的结合允许增强肿瘤的热消融。因此,CPNPBs 可用作增强 PTT 的潜在候选物,具有很大的临床转化发展潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b67/10296163/0b1ea4d3de95/biosensors-13-00642-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b67/10296163/18249b47244a/biosensors-13-00642-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b67/10296163/208933792243/biosensors-13-00642-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b67/10296163/3c9f0dc4aa4e/biosensors-13-00642-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b67/10296163/c7c7c384fb3e/biosensors-13-00642-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b67/10296163/1920d4f7fa1e/biosensors-13-00642-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b67/10296163/40f9f55e8e64/biosensors-13-00642-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b67/10296163/0b1ea4d3de95/biosensors-13-00642-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b67/10296163/18249b47244a/biosensors-13-00642-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b67/10296163/208933792243/biosensors-13-00642-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b67/10296163/3c9f0dc4aa4e/biosensors-13-00642-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b67/10296163/c7c7c384fb3e/biosensors-13-00642-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b67/10296163/1920d4f7fa1e/biosensors-13-00642-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b67/10296163/40f9f55e8e64/biosensors-13-00642-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b67/10296163/0b1ea4d3de95/biosensors-13-00642-g007.jpg

相似文献

[1]
NIR-II Absorbing Conjugated Polymer Nanotheranostics for Thermal Initiated NO Enhanced Photothermal Therapy.

Biosensors (Basel). 2023-6-12

[2]
Semiconducting polymer nanotheranostics for NIR-II/Photoacoustic imaging-guided photothermal initiated nitric oxide/photothermal therapy.

Biomaterials. 2019-6-25

[3]
Gadolinium-Chelated Conjugated Polymer-Based Nanotheranostics for Photoacoustic/Magnetic Resonance/NIR-II Fluorescence Imaging-Guided Cancer Photothermal Therapy.

Theranostics. 2019-5-31

[4]
Nanococktail Based on AIEgens and Semiconducting Polymers: A Single Laser Excited Image-Guided Dual Photothermal Therapy.

Theranostics. 2020

[5]
Semiconducting Polymer Nanoparticles as Theranostic System for Near-Infrared-II Fluorescence Imaging and Photothermal Therapy under Safe Laser Fluence.

ACS Nano. 2020-2-7

[6]
A thieno-isoindigo derivative-based conjugated polymer nanoparticle for photothermal therapy in the NIR-II bio-window.

Nanoscale. 2020-10-8

[7]
Assessing fluorescence detection and effective photothermal therapy of near-infrared polymer nanoparticles using alginate tissue phantoms.

Lasers Surg Med. 2018-12

[8]
Electron-acceptor density adjustments for preparation conjugated polymers with NIR-II absorption and brighter NIR-II fluorescence and 1064 nm active photothermal/gas therapy.

Biomaterials. 2022-1

[9]
Photothermal Temperature-Modulated Cancer Metastasis Harnessed Using Proteinase-Triggered Assembly of Near-Infrared II Photoacoustic/Photothermal Nanotheranostics.

ACS Appl Mater Interfaces. 2024-8-7

[10]
Photonic cancer nanomedicine using the near infrared-II biowindow enabled by biocompatible titanium nitride nanoplatforms.

Nanoscale Horiz. 2018-10-29

引用本文的文献

[1]
Application of NIR Fluorescent Materials in Imaging and Treatment of Tumors of Different Depths.

Nanomaterials (Basel). 2025-5-28

[2]
Gold-Nanorod-Assisted Live Cell Nuclear Imaging Based on Near-Infrared II Dark-Field Microscopy.

Biology (Basel). 2023-10-31

本文引用的文献

[1]
Activatable Cancer Sono-Immunotherapy using Semiconducting Polymer Nanobodies.

Adv Mater. 2022-7

[2]
A Dual-Locked Activatable Phototheranostic Probe for Biomarker-Regulated Photodynamic and Photothermal Cancer Therapy.

Angew Chem Int Ed Engl. 2022-6-27

[3]
Strategies for engineering advanced nanomedicines for gas therapy of cancer.

Natl Sci Rev. 2020-2-27

[4]
Molecular Probes for Autofluorescence-Free Optical Imaging.

Chem Rev. 2021-11-10

[5]
Near infrared II laser controlled free radical releasing nanogenerator for synergistic nitric oxide and alkyl radical therapy of breast cancer.

Nanoscale. 2021-7-7

[6]
Semiconducting polymer nano-PROTACs for activatable photo-immunometabolic cancer therapy.

Nat Commun. 2021-5-18

[7]
Biological Mediator-Propelled Nanosweeper for Nonpharmaceutical Thrombus Therapy.

ACS Nano. 2021-4-27

[8]
Photoacoustic Imaging and Photothermal Therapy of Semiconducting Polymer Nanoparticles: Signal Amplification and Second Near-Infrared Construction.

Small. 2021-2

[9]
Advanced nitric oxide donors: chemical structure of NO drugs, NO nanomedicines and biomedical applications.

Nanoscale. 2021-1-21

[10]
Polymeric Nitric Oxide Delivery Nanoplatforms for Treating Cancer, Cardiovascular Diseases, and Infection.

Adv Healthc Mater. 2021-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索