Suppr超能文献

基于液相离子阱的深度自下而上蛋白质组学。

Deep Bottom-up Proteomics Enabled by the Integration of Liquid-Phase Ion Trap.

机构信息

School of Life Science, Beijing Institute of Technology, Beijing 100081, China.

School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China.

出版信息

Anal Chem. 2023 Jul 11;95(27):10137-10144. doi: 10.1021/acs.analchem.3c00532. Epub 2023 Jun 27.

Abstract

In bottom-up proteomics, the complexity of the proteome requires advanced peptide separation and/or fractionation methods to acquire an in-depth understanding of protein profiles. Proposed earlier as a solution-phase ion manipulation device, liquid phase ion traps (LPITs) were used in front of mass spectrometers to accumulate target ions for improved detection sensitivity. In this work, an LPIT-reversed phase liquid chromatography-tandem mass spectrometry (LPIT-RPLC-MS/MS) platform was established for deep bottom-up proteomics. LPIT was used here as a robust and effective method for peptide fractionation, which also shows good reproducibility and sensitivity on both qualitative and quantitative levels. LPIT separates peptides based on their effective charges and hydrodynamic radii, which is orthogonal to that of RPLC. With excellent orthogonality, the integration of LPIT with RPLC-MS/MS could effectively increase the number of peptides and proteins being detected. When HeLa cells were analyzed, peptide and protein coverages were increased by ∼89.2% and 50.3%, respectively. With high efficiency and low cost, this LPIT-based peptide fraction method could potentially be used in routine deep bottom-up proteomics.

摘要

在自下而上的蛋白质组学中,蛋白质组的复杂性需要先进的肽分离和/或分级方法来深入了解蛋白质谱。液相离子阱(LPIT)早期被提议作为一种溶液相离子操控装置,被用于质谱仪前,以积累目标离子,提高检测灵敏度。在这项工作中,建立了 LPIT-反相液相色谱-串联质谱(LPIT-RPLC-MS/MS)平台,用于深入的自下而上蛋白质组学研究。LPIT 在这里被用作肽分级的强大而有效的方法,在定性和定量水平上均表现出良好的重现性和灵敏度。LPIT 根据有效电荷和流体力学半径对肽进行分离,这与 RPLC 的分离方式是正交的。LPIT 与 RPLC-MS/MS 的出色正交性结合,可以有效地增加被检测的肽和蛋白质的数量。当分析 HeLa 细胞时,肽和蛋白质的覆盖率分别增加了约 89.2%和 50.3%。这种基于 LPIT 的肽分级方法效率高、成本低,有可能在常规的深度自下而上蛋白质组学中得到应用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验