Suppr超能文献

用于深度从头蛋白质组学的高峰容量强阳离子交换反相液相色谱-毛细管区带电泳-串联质谱平台。

Strong cation exchange-reversed phase liquid chromatography-capillary zone electrophoresis-tandem mass spectrometry platform with high peak capacity for deep bottom-up proteomics.

机构信息

Department of Chemistry, Michigan State University, 578 S Shaw Ln, East Lansing, MI 48824, USA.

Department of Chemistry, Michigan State University, 578 S Shaw Ln, East Lansing, MI 48824, USA.

出版信息

Anal Chim Acta. 2018 Jul 5;1012:1-9. doi: 10.1016/j.aca.2018.01.037. Epub 2018 Feb 5.

Abstract

Two-dimensional (2D) liquid chromatography (LC)-tandem mass spectrometry (MS/MS) are typically employed for deep bottom-up proteomics, and the state-of-the-art 2D-LC-MS/MS has approached over 8000 protein identifications (IDs) from mammalian cell lines or tissues in 1-3 days of mass spectrometer time. Capillary zone electrophoresis (CZE)-MS/MS has been suggested as an alternative to LC-MS/MS for bottom-up proteomics. CZE-MS/MS and LC-MS/MS are complementary in protein/peptide ID from complex proteome digests because CZE and LC are orthogonal for peptide separation. In addition, the migration time of peptides from CZE-MS can be predicted accurately, which is invaluable for evaluating the confidence of peptide ID from the database search and even guiding the database search. However, the number of protein IDs from complex proteomes using CZE-MS/MS is still much lower than the state of the art using 2D-LC-MS/MS. In this work, for the first time, we established a strong cation exchange (SCX)-reversed phase LC (RPLC)-CZE-MS/MS platform for deep bottom-up proteomics. The platform identified around 8200 protein groups and 65,000 unique peptides from a mouse brain proteome digest in 70 h. The data represents the largest bottom-up proteomics dataset using CZE-MS/MS and provides a valuable resource for further improving the tool for prediction of peptide migration time in CZE. The peak capacity of the orthogonal SCX-RPLC-CZE platform was estimated to be around 7000. SCX-RPLC-CZE-MS/MS produced comparable numbers of protein and peptide IDs with 2D-LC-MS/MS (8200 vs. 8900 protein groups, 65,000 vs. 70,000 unique peptides) from the mouse brain proteome digest using comparable instrument time. This is the first time that CZE-MS/MS showed its capability to approach comparable performance to the state-of-the-art 2D-LC-MS/MS for deep proteomic sequencing. SCX-RPLC-CZE-MS/MS and 2D-LC-MS/MS showed good complementarity in protein and peptide IDs and combining those two methods improved the number of protein group and unique peptide IDs by nearly 10% and over 40%, respectively, compared with 2D-LC-MS/MS alone.

摘要

二维(2D)液相色谱(LC)-串联质谱(MS/MS)通常用于深度从头蛋白质组学研究,最先进的 2D-LC-MS/MS 在 1-3 天的质谱仪时间内可以从哺乳动物细胞系或组织中鉴定超过 8000 个蛋白质。毛细管区带电泳(CZE)-MS/MS 已被提议作为 LC-MS/MS 的替代方法用于从头蛋白质组学。CZE-MS/MS 和 LC-MS/MS 在复杂蛋白质组消化物中的蛋白质/肽鉴定方面是互补的,因为 CZE 和 LC 对肽分离是正交的。此外,CZE-MS 中肽的迁移时间可以准确预测,这对于评估数据库搜索中肽鉴定的置信度甚至指导数据库搜索非常有价值。然而,使用 CZE-MS/MS 从复杂蛋白质组中鉴定的蛋白质数量仍然远低于使用 2D-LC-MS/MS 的最新技术水平。在这项工作中,我们首次建立了用于深度从头蛋白质组学的强阳离子交换(SCX)反相液相色谱(RPLC)-CZE-MS/MS 平台。该平台在 70 小时内从小鼠脑蛋白质组消化物中鉴定了约 8200 个蛋白质组和 65000 个独特肽。该数据代表了使用 CZE-MS/MS 的最大从头蛋白质组学数据集,为进一步提高 CZE 中肽迁移时间预测工具提供了有价值的资源。正交 SCX-RPLC-CZE 平台的峰容量估计约为 7000。使用可比的仪器时间,从小鼠脑蛋白质组消化物中,SCX-RPLC-CZE-MS/MS 产生的蛋白质和肽 ID 数量与 2D-LC-MS/MS 相当(8200 对 8900 个蛋白质组,65000 对 70000 个独特肽)。这是首次证明 CZE-MS/MS 具有与最先进的 2D-LC-MS/MS 相比接近的性能,可用于深度蛋白质组测序。SCX-RPLC-CZE-MS/MS 和 2D-LC-MS/MS 在蛋白质和肽 ID 方面具有良好的互补性,与单独使用 2D-LC-MS/MS 相比,将这两种方法结合使用可分别将蛋白质组和独特肽 ID 的数量提高近 10%和 40%以上。

相似文献

引用本文的文献

4
Peptidomics and Capillary Electrophoresis.肽组学与毛细管电泳。
Adv Exp Med Biol. 2021;1336:87-104. doi: 10.1007/978-3-030-77252-9_5.
6
Latest Trends on the Future of Three-Dimensional Separations in Chromatography.最新的三维色谱分离技术趋势。
Chem Rev. 2021 Oct 13;121(19):12016-12034. doi: 10.1021/acs.chemrev.0c01244. Epub 2021 Apr 20.
10
Challenging Bioanalyses with Capillary Electrophoresis.毛细管电泳在具有挑战性的生物分析中的应用
Anal Chem. 2020 Jan 7;92(1):49-66. doi: 10.1021/acs.analchem.9b04718. Epub 2019 Dec 2.

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验