Sun Le, Chen Qingyuan, Zheng Min, Ning Xin, Gupta Deepak, Tiwari Prayag
IEEE J Biomed Health Inform. 2023 Jun 27;PP. doi: 10.1109/JBHI.2023.3289992.
Nanorobots have been used in smart health to collect time series data such as electrocardiograms and electroencephalograms. Real-time classification of dynamic time series signals in nanorobots is a challenging task. Nanorobots in the nanoscale range require a classification algorithm with low computational complexity. First, the classification algorithm should be able to dynamically analyze time series signals and update itself to process the concept drifts (CD). Second, the classification algorithm should have the ability to handle catastrophic forgetting (CF) and classify historical data. Most importantly, the classification algorithm should be energy-efficient to use less computing power and memory to classify signals in real-time on a smart nanorobot. To solve these challenges, we design an algorithm that can Prevent Concept Drift in Online continual Learning for time series classification (PCDOL). The prototype suppression item in PCDOL can reduce the impact caused by CD. It also solves the CF problem through the replay feature. The computation per second and the memory consumed by PCDOL are only 3.572M and 1KB, respectively. The experimental results show that PCDOL is better than several state-of-the-art methods for dealing with CD and CF in energy-efficient nanorobots.
纳米机器人已被应用于智能健康领域,用于收集诸如心电图和脑电图等时间序列数据。对纳米机器人中的动态时间序列信号进行实时分类是一项具有挑战性的任务。纳米尺度范围内的纳米机器人需要一种计算复杂度低的分类算法。首先,分类算法应能够动态分析时间序列信号并自我更新以处理概念漂移(CD)。其次,分类算法应具备处理灾难性遗忘(CF)并对历史数据进行分类的能力。最重要的是,分类算法应具有节能性,以便在智能纳米机器人上使用更少的计算能力和内存来实时对信号进行分类。为了解决这些挑战,我们设计了一种能够在时间序列分类的在线持续学习中防止概念漂移(PCDOL)的算法。PCDOL中的原型抑制项可以减少由CD引起的影响。它还通过重放功能解决了CF问题。PCDOL每秒的计算量和消耗的内存分别仅为3.572M和1KB。实验结果表明,在节能纳米机器人中,PCDOL在处理CD和CF方面优于几种先进方法。