Department of Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology (CICAEET), Nanjing University of Information Science and Technology, Nanjing, 210044, China.
Comput Methods Programs Biomed. 2024 Sep;254:108268. doi: 10.1016/j.cmpb.2024.108268. Epub 2024 Jun 4.
Time series data plays a crucial role in the realm of the Internet of Things Medical (IoMT). Through machine learning (ML) algorithms, online time series classification in IoMT systems enables reliable real-time disease detection. Deploying ML algorithms on edge health devices can reduce latency and safeguard patients' privacy. However, the limited computational resources of these devices underscore the need for more energy-efficient algorithms. Furthermore, online time series classification inevitably faces the challenges of concept drift (CD) and catastrophic forgetting (CF). To address these challenges, this study proposes an energy-efficient Online Time series classification algorithm that can solve CF and CD for health devices, called OTCD.
OTCD first detects the appearance of concept drift and performs prototype updates to mitigate its impact. Afterward, it standardizes the potential space distribution and selectively preserves key training parameters to address CF. This approach reduces the required memory and enhances energy efficiency. To evaluate the performance of the proposed model in real-time health monitoring tasks, we utilize electrocardiogram (ECG) and photoplethysmogram (PPG) data. By adopting various feature extractors, three arrhythmia classification models are compared. To assess the energy efficiency of OTCD, we conduct runtime tests on each dataset. Additionally, the OTCD is compared with state-of-the-art (SOTA) dynamic time series classification models for performance evaluation.
The OTCD algorithm outperforms existing SOTA time series classification algorithms in IoMT. In particular, OTCD is on average 2.77% to 14.74% more accurate than other models on the MIT-BIH arrhythmia dataset. Additionally, it consumes low memory (1 KB) and performs computations at a rate of 0.004 GFLOPs per second, leading to energy savings and high time efficiency.
Our proposed algorithm, OTCD, enables efficient real-time classification of medical time series on edge health devices. Experimental results demonstrate its significant competitiveness, offering promising prospects for safe and reliable healthcare.
时间序列数据在物联网医疗(IoMT)领域中起着至关重要的作用。通过机器学习(ML)算法,IoMT 系统中的在线时间序列分类可实现可靠的实时疾病检测。在边缘健康设备上部署 ML 算法可以降低延迟并保护患者隐私。然而,这些设备的计算资源有限,这就需要更节能的算法。此外,在线时间序列分类不可避免地面临概念漂移(CD)和灾难性遗忘(CF)的挑战。为了解决这些挑战,本研究提出了一种节能的在线时间序列分类算法,可解决健康设备的 CF 和 CD 问题,称为 OTCD。
OTCD 首先检测到概念漂移的出现,并进行原型更新以减轻其影响。之后,它对潜在空间分布进行标准化,并选择性地保留关键训练参数以解决 CF。这种方法减少了所需的内存并提高了能源效率。为了评估所提出的模型在实时健康监测任务中的性能,我们使用心电图(ECG)和光电容积脉搏波(PPG)数据。通过采用各种特征提取器,比较了三种心律失常分类模型。为了评估 OTCD 的能源效率,我们对每个数据集进行了运行时测试。此外,OTCD 还与最先进的(SOTA)动态时间序列分类模型进行了性能评估比较。
OTCD 算法在 IoMT 中优于现有的 SOTA 时间序列分类算法。特别是,OTCD 在 MIT-BIH 心律失常数据集上的平均准确率比其他模型高 2.77%至 14.74%。此外,它消耗的内存低(1KB),计算速度为每秒 0.004 GFLOPs,从而实现了节能和高效。
我们提出的算法 OTCD 可实现边缘健康设备上的医疗时间序列的高效实时分类。实验结果表明其具有显著的竞争力,为安全可靠的医疗保健提供了广阔的前景。