Multimedia Research Centre, University of Alberta, Edmonton, AB T6G 2E8, Canada.
3vGeomatics Inc., Vancouver, BC V5Y 0M6, Canada.
Sensors (Basel). 2022 Oct 27;22(21):8245. doi: 10.3390/s22218245.
In satellite remote sensing applications, waterbody segmentation plays an essential role in mapping and monitoring the dynamics of surface water. Satellite image segmentation-examining a relevant sensor data spectrum and identifying the regions of interests to obtain improved performance-is a fundamental step in satellite data analytics. Satellite image segmentation is challenging for a number of reasons, which include cloud interference, inadequate label data, low lighting and the presence of terrain. In recent years, Convolutional Neural Networks (CNNs), combined with (satellite captured) multispectral image segmentation techniques, have led to promising advances in related research. However, ensuring sufficient image resolution, maintaining class balance to achieve prediction quality and reducing the computational overhead of the deep neural architecture are still open to research due to the sophisticated CNN hierarchical architectures. To address these issues, we propose a number of methods: a multi-channel Data-Fusion Module (DFM), Neural Adaptive Patch (NAP) augmentation algorithm and re-weight class balancing (implemented in our PHR-CB experimental setup). We integrated these techniques into our novel Fusion Adaptive Patch Network (FAPNET). Our dataset is the Sentinel-1 SAR microwave signal, used in the Microsoft Artificial Intelligence for Earth competition, so that we can compare our results with the top scores in the competition. In order to validate our approach, we designed four experimental setups and in each setup, we compared our results with the popular image segmentation models UNET, VNET, DNCNN, UNET++, U2NET, ATTUNET, FPN and LINKNET. The comparisons demonstrate that our PHR-CB setup, with class balance, generates the best performance for all models in general and our FAPNET approach outperforms relative works. FAPNET successfully detected the salient features from the satellite images. FAPNET with a MeanIoU score of 87.06% outperforms the state-of-the-art UNET, which has a score of 79.54%. In addition, FAPNET has a shorter training time than other models, comparable to that of UNET (6.77 min for 5 epochs). Qualitative analysis also reveals that our FAPNET model successfully distinguishes micro waterbodies better than existing models. FAPNET is more robust to low lighting, cloud and weather fluctuations and can also be used in RGB images. Our proposed method is lightweight, computationally inexpensive, robust and simple to deploy in industrial applications. Our research findings show that flood-water mapping is more accurate when using SAR signals than RGB images. Our FAPNET architecture, having less parameters than UNET, can distinguish micro waterbodies accurately with shorter training time.
在卫星遥感应用中,水体分割在绘制和监测地表水动态方面起着至关重要的作用。卫星图像分割——检查相关传感器数据谱并识别感兴趣区域,以获得改进的性能——是卫星数据分析的基本步骤。卫星图像分割具有挑战性,原因包括云干扰、标记数据不足、低光照和地形存在。近年来,卷积神经网络(CNN)与(卫星捕获)多光谱图像分割技术相结合,为相关研究带来了有希望的进展。然而,由于复杂的 CNN 层次结构,确保足够的图像分辨率、保持类平衡以实现预测质量以及降低深度神经网络架构的计算开销仍然是开放的研究领域。为了解决这些问题,我们提出了一些方法:多通道数据融合模块(DFM)、神经自适应补丁(NAP)增强算法和重新加权类平衡(在我们的 PHR-CB 实验设置中实现)。我们将这些技术集成到我们的新型融合自适应补丁网络(FAPNET)中。我们的数据集是 Sentinel-1 SAR 微波信号,用于微软地球人工智能竞赛,因此我们可以将我们的结果与竞赛中的最高分数进行比较。为了验证我们的方法,我们设计了四个实验设置,在每个设置中,我们将我们的结果与流行的图像分割模型 UNET、VNET、DNCNN、UNET++、U2NET、ATTUNET、FPN 和 LINKNET 进行了比较。比较结果表明,我们的 PHR-CB 设置具有类平衡,总体上为所有模型生成了最佳性能,并且我们的 FAPNET 方法优于相关工作。FAPNET 成功地从卫星图像中检测到显著特征。FAPNET 的平均交集分数为 87.06%,优于最先进的 UNET,其分数为 79.54%。此外,FAPNET 的训练时间比其他模型短,与 UNET 相当(5 个 epoch 为 6.77 分钟)。定性分析还表明,我们的 FAPNET 模型比现有模型更好地成功区分微观水体。FAPNET 对低光照、云和天气波动更稳健,也可用于 RGB 图像。我们提出的方法轻巧、计算成本低、鲁棒且易于在工业应用中部署。我们的研究结果表明,使用 SAR 信号进行洪水测绘比使用 RGB 图像更准确。我们的 FAPNET 架构的参数比 UNET 少,因此可以在更短的训练时间内准确区分微观水体。