Suppr超能文献

粪卟啉原脱羧酶与单乙烯基、单丙酸盐去氢胆素的反应性。

Reactivity of Coproheme Decarboxylase with Monovinyl, Monopropionate Deuteroheme.

机构信息

Department of Chemistry, Institute of Biochemistry, University of Natural Resources and Life Sciences, Muthgasse 18, A-1190 Vienna, Austria.

出版信息

Biomolecules. 2023 Jun 6;13(6):946. doi: 10.3390/biom13060946.

Abstract

Coproheme decarboxylases (ChdCs) are terminal enzymes of the coproporphyrin-dependent heme biosynthetic pathway. In this reaction, two propionate groups are cleaved from the redox-active iron-containing substrate, coproheme, to form vinyl groups of the heme product. The two decarboxylation reactions proceed sequentially, and a redox-active three-propionate porphyrin, called monovinyl, monopropionate deuteroheme (MMD), is transiently formed as an intermediate. While the reaction mechanism for the first part of the redox reaction, which is initiated by hydrogen peroxide, has been elucidated in some detail, the second part of this reaction, starting from MMD, has not been studied. Here, we report the optimization of enzymatic MMD production by ChdC and purification by reversed-phase chromatography. With the obtained MMD, we were able to study the second part of heme formation by actinobacterial ChdC from , starting with Compound I formation upon the addition of hydrogen peroxide. The results indicate that the second part of the decarboxylation reaction is analogous to the first part, although somewhat slower, which is explained by differences in the active site architecture and its H-bonding network. The results are discussed in terms of known kinetic and structural data and help to fill some mechanistic gaps in the overall reaction catalyzed by ChdCs.

摘要

粪卟啉原脱羧酶(ChdCs)是粪卟啉原依赖性血红素生物合成途径的末端酶。在该反应中,两个丙酸盐基团从氧化还原活性含铁底物粪卟啉原中裂解,形成血红素产物的乙烯基。两个脱羧反应依次进行,并且作为中间体短暂形成氧化还原活性的三丙酸卟啉,称为单乙烯基,单丙酸基胆绿素(MMD)。虽然已经详细阐明了由过氧化氢引发的氧化还原反应的第一部分的反应机制,但该反应的第二部分,即从 MMD 开始,尚未进行研究。在这里,我们报告了通过 ChdC 优化酶促 MMD 的产生和通过反相色谱进行的纯化。用获得的 MMD,我们能够通过添加过氧化氢来研究来自 actinobacterial ChdC 的血红素形成的第二部分,从复合物 I 的形成开始。结果表明,脱羧反应的第二部分与第一部分类似,尽管稍慢一些,这可以通过活性位点结构及其氢键网络的差异来解释。结果根据已知的动力学和结构数据进行了讨论,并有助于填补 ChdCs 催化的整个反应中的一些机制空白。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f164/10296651/364d5f7026f9/biomolecules-13-00946-g001.jpg

相似文献

1
Reactivity of Coproheme Decarboxylase with Monovinyl, Monopropionate Deuteroheme.
Biomolecules. 2023 Jun 6;13(6):946. doi: 10.3390/biom13060946.
2
Reaction intermediate rotation during the decarboxylation of coproheme to heme b in C. diphtheriae.
Biophys J. 2021 Sep 7;120(17):3600-3614. doi: 10.1016/j.bpj.2021.06.042. Epub 2021 Jul 31.
3
Actinobacterial Coproheme Decarboxylases Use Histidine as a Distal Base to Promote Compound I Formation.
ACS Catal. 2020 May 15;10(10):5405-5418. doi: 10.1021/acscatal.0c00411. Epub 2020 Apr 9.
6
An active site at work - the role of key residues in C. diphteriae coproheme decarboxylase.
J Inorg Biochem. 2022 Apr;229:111718. doi: 10.1016/j.jinorgbio.2022.111718. Epub 2022 Jan 6.
7
The role of the distal cavity in carbon monoxide stabilization in the coproheme decarboxylase enzyme from C. diphtheriae.
J Inorg Biochem. 2023 Aug;245:112243. doi: 10.1016/j.jinorgbio.2023.112243. Epub 2023 May 3.
8
The hydrogen bonding network of coproheme in coproheme decarboxylase from Listeria monocytogenes: Effect on structure and catalysis.
J Inorg Biochem. 2019 Jun;195:61-70. doi: 10.1016/j.jinorgbio.2019.03.009. Epub 2019 Mar 21.
9
Reorienting Mechanism of Harderoheme in Coproheme Decarboxylase-A Computational Study.
Int J Mol Sci. 2022 Feb 25;23(5):2564. doi: 10.3390/ijms23052564.
10
Deciphering the role of the distal pocket in Staphylococcus aureus coproheme decarboxylase.
J Inorg Biochem. 2025 Aug;269:112896. doi: 10.1016/j.jinorgbio.2025.112896. Epub 2025 Mar 15.

本文引用的文献

2
A primer on heme biosynthesis.
Biol Chem. 2022 Aug 29;403(11-12):985-1003. doi: 10.1515/hsz-2022-0205. Print 2022 Nov 25.
3
Spectroscopic evidence of the effect of hydrogen peroxide excess on the coproheme decarboxylase from actinobacterial .
J Raman Spectrosc. 2022 May;53(5):890-901. doi: 10.1002/jrs.6326. Epub 2022 Mar 8.
4
Reorienting Mechanism of Harderoheme in Coproheme Decarboxylase-A Computational Study.
Int J Mol Sci. 2022 Feb 25;23(5):2564. doi: 10.3390/ijms23052564.
5
Initial Steps to Engineer Coproheme Decarboxylase to Obtain Stereospecific Monovinyl, Monopropionyl Deuterohemes.
Front Bioeng Biotechnol. 2022 Jan 24;9:807678. doi: 10.3389/fbioe.2021.807678. eCollection 2021.
6
An active site at work - the role of key residues in C. diphteriae coproheme decarboxylase.
J Inorg Biochem. 2022 Apr;229:111718. doi: 10.1016/j.jinorgbio.2022.111718. Epub 2022 Jan 6.
7
Reaction intermediate rotation during the decarboxylation of coproheme to heme b in C. diphtheriae.
Biophys J. 2021 Sep 7;120(17):3600-3614. doi: 10.1016/j.bpj.2021.06.042. Epub 2021 Jul 31.
8
Heme biosynthesis in prokaryotes.
Biochim Biophys Acta Mol Cell Res. 2021 Jan;1868(1):118861. doi: 10.1016/j.bbamcr.2020.118861. Epub 2020 Sep 23.
9
Understanding molecular enzymology of porphyrin-binding α + β barrel proteins - One fold, multiple functions.
Biochim Biophys Acta Proteins Proteom. 2021 Jan;1869(1):140536. doi: 10.1016/j.bbapap.2020.140536. Epub 2020 Sep 4.
10
Actinobacterial Coproheme Decarboxylases Use Histidine as a Distal Base to Promote Compound I Formation.
ACS Catal. 2020 May 15;10(10):5405-5418. doi: 10.1021/acscatal.0c00411. Epub 2020 Apr 9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验