Suppr超能文献

放线菌粪卟啉脱羧酶利用组氨酸作为远端碱基来促进化合物I的形成。

Actinobacterial Coproheme Decarboxylases Use Histidine as a Distal Base to Promote Compound I Formation.

作者信息

Michlits Hanna, Lier Bettina, Pfanzagl Vera, Djinović-Carugo Kristina, Furtmüller Paul G, Oostenbrink Chris, Obinger Christian, Hofbauer Stefan

机构信息

Department of Chemistry, Institute of Biochemistry, BOKU-University of Natural Resources and Life Sciences, A-1190 Vienna, Austria.

Department of Material Sciences and Process Engineering, Institute of Molecular Modeling and Simulation, BOKU-University of Natural Resources and Life Sciences, A-1190 Vienna, Austria.

出版信息

ACS Catal. 2020 May 15;10(10):5405-5418. doi: 10.1021/acscatal.0c00411. Epub 2020 Apr 9.

Abstract

Coproheme decarboxylases (ChdCs) catalyze the final step in heme biosynthesis of monoderm and some diderm bacteria. In this reaction, coproheme is converted to heme via monovinyl monopropionate deuteroheme (MMD) in two consecutive decarboxylation steps. In Firmicutes decarboxylation of propionates 2 and 4 of coproheme depend on hydrogen peroxide and the presence of a catalytic tyrosine. Here we demonstrate that ChdCs from Actinobacteria are unique in using a histidine (H118 in ChdC from , ChdC) as a distal base in addition to the redox-active tyrosine (Y135). We present the X-ray crystal structures of coproheme-ChdC and MMD-ChdC, which clearly show (i) differences in the active site architecture between Firmicutes and Actinobacteria and (ii) rotation of the redox-active reaction intermediate (MMD) after formation of the vinyl group at position 2. Distal H118 is shown to catalyze the heterolytic cleavage of hydrogen peroxide ( = (4.90 ± 1.25) × 10 M s). The resulting Compound I is rapidly converted to a catalytically active Compound I* (oxoiron(IV) Y135) that initiates the radical decarboxylation reactions. As a consequence of the more efficient Compound I formation, actinobacterial ChdCs exhibit a higher catalytic efficiency in comparison to representatives from Firmicutes. On the basis of the kinetic data of wild-type ChdC and the variants H118A, Y135A, and H118A/Y135A together with high-resolution crystal structures and molecular dynamics simulations, we present a molecular mechanism for the hydrogen peroxide dependent conversion of coproheme via MMD to heme and discuss differences between ChdCs from Actinobacteria and Firmicutes.

摘要

粪卟啉原脱羧酶(ChdCs)催化单皮细菌和一些双皮细菌血红素生物合成的最后一步。在该反应中,粪卟啉原通过单乙烯基单丙酸酯亚铁血红素(MMD)在两个连续的脱羧步骤中转化为血红素。在厚壁菌门中,粪卟啉原的丙酸酯2和4的脱羧依赖于过氧化氢和催化性酪氨酸的存在。在此,我们证明放线菌的ChdCs除了具有氧化还原活性的酪氨酸(来自ChdC的Y135)外,还独特地使用组氨酸(来自ChdC的H118)作为远端碱基。我们展示了粪卟啉原 - ChdC和MMD - ChdC的X射线晶体结构,这些结构清楚地显示了(i)厚壁菌门和放线菌门在活性位点结构上的差异,以及(ii)在位置2形成乙烯基后氧化还原活性反应中间体(MMD)的旋转。远端H118被证明催化过氧化氢的异裂(k = (4.90 ± 1.25) × 10 M s)。生成的化合物I迅速转化为具有催化活性的化合物I*(氧合铁(IV)Y135),从而引发自由基脱羧反应。由于更高效地形成化合物I,与厚壁菌门的代表相比,放线菌的ChdCs表现出更高的催化效率。基于野生型ChdC及其变体H118A、Y135A和H118A/Y135A的动力学数据,以及高分辨率晶体结构和分子动力学模拟,我们提出了一种依赖过氧化氢将粪卟啉原通过MMD转化为血红素的分子机制,并讨论了放线菌和厚壁菌门的ChdCs之间的差异。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验