Dipartimento di Chimica "Ugo Schiff", Università di Firenze, Sesto Fiorentino (FI), Italy.
Department of Chemistry, Institute of Biochemistry, Institute of Molecular Modeling and Simulation, BOKU-University of Natural Resources and Life Sciences, Vienna, Austria.
Biophys J. 2021 Sep 7;120(17):3600-3614. doi: 10.1016/j.bpj.2021.06.042. Epub 2021 Jul 31.
Monoderm bacteria utilize coproheme decarboxylases (ChdCs) to generate heme b by a stepwise decarboxylation of two propionate groups of iron coproporphyrin III (coproheme), forming two vinyl groups. This work focuses on actinobacterial ChdC from Corynebacterium diphtheriae (CdChdC) to elucidate the hydrogen peroxide-mediated decarboxylation of coproheme via monovinyl monopropionyl deuteroheme (MMD) to heme b, with the principal aim being to understand the reorientation mechanism of MMD during turnover. Wild-type CdChdC and variants, namely H118A, H118F, and A207E, were studied by resonance Raman and ultraviolet-visible spectroscopy, mass spectrometry, and molecular dynamics simulations. As actinobacterial ChdCs use a histidine (H118) as a distal base, we studied the H118A and H118F variants to elucidate the effect of 1) the elimination of the proton acceptor and 2) steric constraints within the active site. The A207E variant mimics the proximal H-bonding network found in chlorite dismutases. This mutation potentially increases the rigidity of the proximal site and might impair the rotation of the reaction intermediate MMD. We found that both wild-type CdChdC and the variant H118A convert coproheme mainly to heme b upon titration with HO. Interestingly, the variant A207E mostly accumulates MMD along with small amounts of heme b, whereas H118F is unable to produce heme b and accumulates only MMD. Together with molecular dynamics simulations, the spectroscopic data provide insight into the reaction mechanism and the mode of reorientation of MMD, i.e., a rotation in the active site versus a release and rebinding.
单胞菌利用共胆素脱羧酶(ChdC)通过铁原卟啉 III(共胆素)中两个丙酸基团的逐步脱羧作用生成血红素 b,形成两个乙烯基。这项工作专注于来自白喉棒状杆菌的放线菌 ChdC(CdChdC),以阐明通过单乙烯基单丙酰基氘血红素(MMD)向血红素 b 的过氧化氢介导的共胆素脱羧作用,主要目的是了解周转过程中 MMD 的重新定向机制。通过共振拉曼和紫外-可见光谱、质谱和分子动力学模拟研究了野生型 CdChdC 和变体,即 H118A、H118F 和 A207E。由于放线菌 ChdC 使用组氨酸(H118)作为远端碱基,我们研究了 H118A 和 H118F 变体,以阐明 1)质子受体消除和 2)活性位点内的空间位阻的影响。A207E 变体模拟了在亚氯酸盐歧化酶中发现的近端氢键网络。这种突变可能会增加近端位点的刚性,并可能损害反应中间体 MMD 的旋转。我们发现,在与 HO 滴定时,野生型 CdChdC 和变体 H118A 主要将共胆素转化为血红素 b。有趣的是,变体 A207E 主要积累 MMD 以及少量的血红素 b,而 H118F 不能产生血红素 b,仅积累 MMD。与分子动力学模拟一起,光谱数据提供了对反应机制和 MMD 重新定向模式的深入了解,即活性位点中的旋转与释放和再结合。