Department of Biotechnology, College of Life Science & Biotechnology, Yonsei University, Seoul, 03722, Korea.
Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, 03722, Korea.
Exp Mol Med. 2020 Nov;52(11):1798-1808. doi: 10.1038/s12276-020-00528-0. Epub 2020 Nov 26.
Understanding cellular heterogeneity is the holy grail of biology and medicine. Cells harboring identical genomes show a wide variety of behaviors in multicellular organisms. Genetic circuits underlying cell-type identities will facilitate the understanding of the regulatory programs for differentiation and maintenance of distinct cellular states. Such a cell-type-specific gene network can be inferred from coregulatory patterns across individual cells. Conventional methods of transcriptome profiling using tissue samples provide only average signals of diverse cell types. Therefore, reconstructing gene regulatory networks for a particular cell type is not feasible with tissue-based transcriptome data. Recently, single-cell omics technology has emerged and enabled the capture of the transcriptomic landscape of every individual cell. Although single-cell gene expression studies have already opened up new avenues, network biology using single-cell transcriptome data will further accelerate our understanding of cellular heterogeneity. In this review, we provide an overview of single-cell network biology and summarize recent progress in method development for network inference from single-cell RNA sequencing (scRNA-seq) data. Then, we describe how cell-type-specific gene networks can be utilized to study regulatory programs specific to disease-associated cell types and cellular states. Moreover, with scRNA data, modeling personal or patient-specific gene networks is feasible. Therefore, we also introduce potential applications of single-cell network biology for precision medicine. We envision a rapid paradigm shift toward single-cell network analysis for systems biology in the near future.
理解细胞异质性是生物学和医学的圣杯。在多细胞生物中,携带相同基因组的细胞表现出多种多样的行为。细胞类型特征背后的遗传电路将有助于理解分化和维持不同细胞状态的调控程序。这种特定于细胞类型的基因网络可以通过单个细胞的共调控模式来推断。使用组织样本进行转录组谱分析的传统方法只能提供多种细胞类型的平均信号。因此,利用基于组织的转录组数据来重建特定细胞类型的基因调控网络是不可行的。最近,单细胞组学技术的出现使我们能够捕捉每个单个细胞的转录组景观。尽管单细胞基因表达研究已经开辟了新的途径,但使用单细胞转录组数据的网络生物学将进一步加速我们对细胞异质性的理解。在这篇综述中,我们提供了单细胞网络生物学的概述,并总结了最近在从单细胞 RNA 测序(scRNA-seq)数据中推断网络的方法开发方面的进展。然后,我们描述了如何利用特定于细胞类型的基因网络来研究与疾病相关的细胞类型和细胞状态的调控程序。此外,利用 scRNA 数据,可以对个人或患者特定的基因网络进行建模。因此,我们还介绍了单细胞网络生物学在精准医学中的潜在应用。我们设想,在不久的将来,单细胞网络分析将迅速成为系统生物学的范式转变。