Suppr超能文献

基于多准则的电动汽车比较:使用q阶正交对模糊数

A Multicriteria-Based Comparison of Electric Vehicles Using q-Rung Orthopair Fuzzy Numbers.

作者信息

Biswas Sanjib, Sanyal Aparajita, Božanić Darko, Kar Samarjit, Milić Aleksandar, Puška Adis

机构信息

Decision Science & Operations Management Area, Calcutta Business School, Diamond Harbour Road, Bishnupur Kolkata 743503, West Bengal, India.

Marketing Area, Calcutta Business School, Diamond Harbour Road, Bishnupur Kolkata 743503, West Bengal, India.

出版信息

Entropy (Basel). 2023 Jun 6;25(6):905. doi: 10.3390/e25060905.

Abstract

The subject of this research is the evaluation of electric cars and the choice of car that best meets the set research criteria. To this end, the criteria weights were determined using the entropy method with two-step normalization and a full consistency check. In addition, the entropy method was extended further with q-rung orthopair fuzzy (qROF) information and Einstein aggregation for carrying out decision making under uncertainty with imprecise information. Sustainable transportation was selected as the area of application. The current work compared a set of 20 leading EVs in India using the proposed decision-making model. The comparison was designed to cover two aspects: technical attributes and user opinions. For the ranking of the EVs, a recently developed multicriteria decision-making (MCDM) model, the alternative ranking order method with two-step normalization (AROMAN), was used. The present work is a novel hybridization of the entropy method, full consistency method (FUCOM), and AROMAN in an uncertain environment. The results show that the electricity consumption criterion (w = 0.0944) received the greatest weight, while the best ranked alternative was A7. The results also show robustness and stability, as revealed through a comparison with the other MCDM models and a sensitivity analysis. The present work is different from the past studies, as it provides a robust hybrid decision-making model that uses both objective and subjective information.

摘要

本研究的主题是对电动汽车进行评估,并选择最符合既定研究标准的汽车。为此,采用具有两步归一化和完全一致性检验的熵权法确定标准权重。此外,熵权法还进一步扩展为基于q阶正交对模糊(qROF)信息和爱因斯坦聚合,以便在信息不精确的不确定性条件下进行决策。选择可持续交通作为应用领域。当前工作使用所提出的决策模型对印度的20款领先电动汽车进行了比较。该比较旨在涵盖两个方面:技术属性和用户意见。对于电动汽车的排名,使用了最近开发的多准则决策(MCDM)模型——两步归一化的替代排序顺序法(AROMAN)。目前的工作是在不确定环境下对熵权法、完全一致性方法(FUCOM)和AROMAN的一种新颖融合。结果表明,电耗标准(权重w = 0.0944)的权重最大,而排名最佳的替代方案是A7。与其他MCDM模型的比较以及敏感性分析结果还表明了该模型的稳健性和稳定性。当前工作与以往研究不同,因为它提供了一个同时使用客观和主观信息的稳健混合决策模型。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b617/10297593/4a18911e0dda/entropy-25-00905-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验