Suppr超能文献

通过使用纠错数据加密来提高量子密码学的性能。

Improving the Performance of Quantum Cryptography by Using the Encryption of the Error Correction Data.

作者信息

Pastushenko Valeria A, Kronberg Dmitry A

机构信息

Terra Quantum AG, Kronhausstrasse 25, 9000 St. Gallen, Switzerland.

出版信息

Entropy (Basel). 2023 Jun 20;25(6):956. doi: 10.3390/e25060956.

Abstract

Security of quantum key distribution (QKD) protocols rely solely on quantum physics laws, namely, on the impossibility to distinguish between non-orthogonal quantum states with absolute certainty. Due to this, a potential eavesdropper cannot extract full information from the states stored in their quantum memory after an attack despite knowing all the information disclosed during classical post-processing stages of QKD. Here, we introduce the idea of encrypting classical communication related to error-correction in order to decrease the amount of information available to the eavesdropper and hence improve the performance of quantum key distribution protocols. We analyze the applicability of the method in the context of additional assumptions concerning the eavesdropper's quantum memory coherence time and discuss the similarity of our proposition and the quantum data locking (QDL) technique.

摘要

量子密钥分发(QKD)协议的安全性仅依赖于量子物理定律,即完全确定地区分非正交量子态是不可能的。因此,尽管潜在窃听者知道QKD经典后处理阶段披露的所有信息,但在攻击后,他们无法从存储在其量子存储器中的态中提取完整信息。在此,我们引入对与纠错相关的经典通信进行加密的想法,以减少窃听者可获取的信息量,从而提高量子密钥分发协议的性能。我们在关于窃听者量子存储器相干时间的额外假设背景下分析该方法的适用性,并讨论我们的提议与量子数据锁定(QDL)技术的相似性。

相似文献

2
Practical quantum key distribution protocol without monitoring signal disturbance.
Nature. 2014 May 22;509(7501):475-8. doi: 10.1038/nature13303.
3
Quantum-locked key distribution at nearly the classical capacity rate.
Phys Rev Lett. 2014 Oct 17;113(16):160502. doi: 10.1103/PhysRevLett.113.160502. Epub 2014 Oct 15.
5
Quantum Oblivious Transfer: A Short Review.
Entropy (Basel). 2022 Jul 7;24(7):945. doi: 10.3390/e24070945.
6
Quantum Key Distribution: Modeling and Simulation through BB84 Protocol Using Python3.
Sensors (Basel). 2022 Aug 21;22(16):6284. doi: 10.3390/s22166284.
7
Satellite Quantum Communications When Man-in-the-Middle Attacks Are Excluded.
Entropy (Basel). 2019 Apr 10;21(4):387. doi: 10.3390/e21040387.
8
Secure key distribution exploiting error rate criticality for radio frequency links.
R Soc Open Sci. 2023 Oct 18;10(10):230411. doi: 10.1098/rsos.230411. eCollection 2023 Oct.
9
General immunity and superadditivity of two-way Gaussian quantum cryptography.
Sci Rep. 2016 Mar 1;6:22225. doi: 10.1038/srep22225.
10
Provably Secure Symmetric Private Information Retrieval with Quantum Cryptography.
Entropy (Basel). 2020 Dec 31;23(1):54. doi: 10.3390/e23010054.

引用本文的文献

1
Loss Control-Based Key Distribution under Quantum Protection.
Entropy (Basel). 2024 May 22;26(6):437. doi: 10.3390/e26060437.
2
The Quantum-Medical Nexus: Understanding the Impact of Quantum Technologies on Healthcare.
Cureus. 2023 Oct 31;15(10):e48077. doi: 10.7759/cureus.48077. eCollection 2023 Oct.

本文引用的文献

1
A Review of Security Evaluation of Practical Quantum Key Distribution System.
Entropy (Basel). 2022 Feb 10;24(2):260. doi: 10.3390/e24020260.
2
Lower and upper bounds on the secret-key rate for quantum key distribution protocols using one-way classical communication.
Phys Rev Lett. 2005 Aug 19;95(8):080501. doi: 10.1103/PhysRevLett.95.080501. Epub 2005 Aug 15.
3
Decoy state quantum key distribution.
Phys Rev Lett. 2005 Jun 17;94(23):230504. doi: 10.1103/PhysRevLett.94.230504. Epub 2005 Jun 16.
4
Locking classical correlations in quantum States.
Phys Rev Lett. 2004 Feb 13;92(6):067902. doi: 10.1103/PhysRevLett.92.067902. Epub 2004 Feb 12.
5
Secure quantum key distribution with an uncharacterized source.
Phys Rev Lett. 2003 Feb 7;90(5):057902. doi: 10.1103/PhysRevLett.90.057902. Epub 2003 Feb 6.
6
Quantum cryptography using any two nonorthogonal states.
Phys Rev Lett. 1992 May 25;68(21):3121-3124. doi: 10.1103/PhysRevLett.68.3121.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验