Suppr超能文献

量子密钥分发:使用Python3通过BB84协议进行建模与仿真。

Quantum Key Distribution: Modeling and Simulation through BB84 Protocol Using Python3.

作者信息

Adu-Kyere Akwasi, Nigussie Ethiopia, Isoaho Jouni

机构信息

Department of Computing, University of Turku, Vesilinnatie 5, 20500 Turku, Finland.

出版信息

Sensors (Basel). 2022 Aug 21;22(16):6284. doi: 10.3390/s22166284.

Abstract

Autonomous "Things" is becoming the future trend as the role, and responsibility of IoT keep diversifying. Its applicability and deployment need to re-stand technological advancement. The versatile security interaction between IoTs in human-to-machine and machine-to-machine must also endure mathematical and computational cryptographic attack intricacies. Quantum cryptography uses the laws of quantum mechanics to generate a secure key by manipulating light properties for secure end-to-end communication. We present a proof-of-principle via a communication architecture model and implementation to simulate these laws of nature. The model relies on the BB84 quantum key distribution (QKD) protocol with two scenarios, without and with the presence of an eavesdropper via the interception-resend attack model from a theoretical, methodological, and practical perspective. The proposed simulation initiates communication over a quantum channel for polarized photon transmission after a pre-agreed configuration over a Classic Channel with parameters. Simulation implementation results confirm that the presence of an eavesdropper is detectable during key generation due to Heisenberg's uncertainty and no-cloning principles. An eavesdropper has a 0.5 probability of guessing transmission qubit and 0.25 for the polarization state. During simulation re-iterations, a base-mismatch process discarded about 50 percent of the total initial key bits with an Error threshold of 0.11 percent.

摘要

随着物联网的作用和责任不断多样化,自主“事物”正成为未来的趋势。其适用性和部署需要重新适应技术进步。物联网在人机和机器对机器之间的通用安全交互还必须经受数学和计算加密攻击的复杂性。量子密码学利用量子力学定律,通过操纵光的特性来生成安全密钥,以实现安全的端到端通信。我们通过一个通信架构模型和实现方式给出了一个原理证明,以模拟这些自然规律。该模型依赖于BB84量子密钥分发(QKD)协议,有两种场景,从理论、方法和实践的角度,分别是不存在窃听者以及存在窃听者(通过拦截重发攻击模型)的情况。所提出的模拟在通过经典信道预先商定配置参数后,通过量子信道发起通信以进行偏振光子传输。模拟实现结果证实,由于海森堡不确定性原理和不可克隆原理,在密钥生成过程中可以检测到窃听者的存在。窃听者猜对传输量子比特的概率为0.5,猜对偏振态的概率为0.25。在模拟迭代过程中,一个碱基不匹配过程在错误阈值为0.11%的情况下,丢弃了约50%的初始密钥位。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d2f8/9413261/0e131f13e12e/sensors-22-06284-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验