Suppr超能文献

识别出行网络中的重要节点并研究其决定因素。

Identifying Important Nodes in Trip Networks and Investigating Their Determinants.

作者信息

Li Ze-Tao, Nie Wei-Peng, Cai Shi-Min, Zhao Zhi-Dan, Zhou Tao

机构信息

Compleχ Lab, Big Data Research Center, University of Electronic Science and Technology of China, Chengdu 610054, China.

Complexity Computation Laboratory, Department of Computer Science, School of Engineering, Shantou University, Shantou 515063, China.

出版信息

Entropy (Basel). 2023 Jun 20;25(6):958. doi: 10.3390/e25060958.

Abstract

Describing travel patterns and identifying significant locations is a crucial area of research in transportation geography and social dynamics. Our study aims to contribute to this field by analyzing taxi trip data from Chengdu and New York City. Specifically, we investigate the probability density distribution of trip distance in each city, which enables us to construct long- and short-distance trip networks. To identify critical nodes within these networks, we employ the PageRank algorithm and categorize them using centrality and participation indices. Furthermore, we explore the factors that contribute to their influence and observe a clear hierarchical multi-centre structure in Chengdu's trip networks, while no such phenomenon is evident in New York City's. Our study provides insight into the impact of trip distance on important nodes within trip networks in both cities and serves as a reference for distinguishing between long and short taxi trips. Our findings also reveal substantial differences in network structures between the two cities, highlighting the nuanced relationship between network structure and socio-economic factors. Ultimately, our research sheds light on the underlying mechanisms shaping transportation networks in urban areas and offers valuable insights into urban planning and policy making.

摘要

描述出行模式并识别重要地点是交通地理学和社会动态研究中的一个关键领域。我们的研究旨在通过分析成都和纽约市的出租车出行数据为该领域做出贡献。具体而言,我们研究了每个城市出行距离的概率密度分布,这使我们能够构建长途和短途出行网络。为了识别这些网络中的关键节点,我们采用PageRank算法,并使用中心性和参与指数对其进行分类。此外,我们探究了影响其影响力的因素,并观察到成都出行网络中存在明显的分层多中心结构,而纽约市则没有这种现象。我们的研究深入了解了出行距离对两个城市出行网络中重要节点的影响,并为区分长途和短途出租车出行提供了参考。我们的研究结果还揭示了两个城市网络结构的显著差异,凸显了网络结构与社会经济因素之间的细微关系。最终,我们的研究揭示了塑造城市地区交通网络的潜在机制,并为城市规划和政策制定提供了有价值的见解。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/91a3/10296801/00a9dcf5aef4/entropy-25-00958-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验